首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   35篇
  国内免费   1篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   14篇
  2014年   14篇
  2013年   24篇
  2012年   20篇
  2011年   24篇
  2010年   11篇
  2009年   21篇
  2008年   22篇
  2007年   19篇
  2006年   22篇
  2005年   25篇
  2004年   13篇
  2003年   12篇
  2002年   20篇
  2001年   15篇
  2000年   12篇
  1999年   11篇
  1998年   8篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   8篇
  1991年   11篇
  1990年   11篇
  1989年   12篇
  1988年   10篇
  1987年   5篇
  1986年   12篇
  1985年   7篇
  1984年   6篇
  1983年   15篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   7篇
  1969年   3篇
  1967年   3篇
  1964年   3篇
  1941年   3篇
  1928年   3篇
  1921年   3篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
71.
72.
Axonal degeneration is a hallmark of many neuropathies, neurodegenerative diseases, and injuries. Here, using a Drosophila injury model, we have identified a highly conserved E3 ubiquitin ligase, Highwire (Hiw), as an important regulator of axonal and synaptic degeneration. Mutations in hiw strongly inhibit Wallerian degeneration in multiple neuron types and developmental stages. This new phenotype is mediated by a new downstream target of Hiw: the NAD+ biosynthetic enzyme nicotinamide mononucleotide adenyltransferase (Nmnat), which acts in parallel to a previously known target of Hiw, the Wallenda dileucine zipper kinase (Wnd/DLK) MAPKKK. Hiw promotes a rapid disappearance of Nmnat protein in the distal stump after injury. An increased level of Nmnat protein in hiw mutants is both required and sufficient to inhibit degeneration. Ectopically expressed mouse Nmnat2 is also subject to regulation by Hiw in distal axons and synapses. These findings implicate an important role for endogenous Nmnat and its regulation, via a conserved mechanism, in the initiation of axonal degeneration. Through independent regulation of Wnd/DLK, whose function is required for proximal axons to regenerate, Hiw plays a central role in coordinating both regenerative and degenerative responses to axonal injury.  相似文献   
73.
74.
The genus Henipavirus in the family Paramyxoviridae contains two viruses, Hendra virus (HeV) and Nipah virus (NiV) for which pteropid bats act as the main natural reservoir. Each virus also causes serious and commonly lethal infection of people as well as various species of domestic animals, however little is known about the associated mechanisms of pathogenesis. Here, we report the isolation and characterization of a new paramyxovirus from pteropid bats, Cedar virus (CedPV), which shares significant features with the known henipaviruses. The genome size (18,162 nt) and organization of CedPV is very similar to that of HeV and NiV; its nucleocapsid protein displays antigenic cross-reactivity with henipaviruses; and it uses the same receptor molecule (ephrin- B2) for entry during infection. Preliminary challenge studies with CedPV in ferrets and guinea pigs, both susceptible to infection and disease with known henipaviruses, confirmed virus replication and production of neutralizing antibodies although clinical disease was not observed. In this context, it is interesting to note that the major genetic difference between CedPV and HeV or NiV lies within the coding strategy of the P gene, which is known to play an important role in evading the host innate immune system. Unlike HeV, NiV, and almost all known paramyxoviruses, the CedPV P gene lacks both RNA editing and also the coding capacity for the highly conserved V protein. Preliminary study indicated that CedPV infection of human cells induces a more robust IFN-β response than HeV.  相似文献   
75.
Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.  相似文献   
76.
77.
78.
Microbial products such as LPS stimulate macrophages to produce a wide diversity of inducible gene products needed for immediate host defense and priming of an appropriate acquired immune response. In this study, we have examined LPS-inducible gene expression in subclones of a mouse macrophage cell line, RAW264, using cDNA microarrays. Even archetypal target genes such as TNF-alpha were not induced in all subclones, and there was no absolute correlation between expression of pairs of genes. Nevertheless, the array analysis revealed clusters of genes that were more likely to be coexpressed. RAW264 cells stably transfected with luciferase reporter genes driven by LPS-responsive promoters revealed the same kind of clonal heterogeneity. The results indicate that each LPS-inducible gene has its own inherent probability of activation in response to LPS.  相似文献   
79.
80.
Identification of the human hepatic microsomal glucose-6-phosphatase enzyme   总被引:2,自引:0,他引:2  
The glucose-6-phosphatase enzyme protein of the human hepatic microsomal glucose-6-phosphatase system was identified as a 36.5 kDa polypeptide. The 36.5 kDa glucose-6-phosphatase enzyme protein was shown to be absent in the microsomes isolated from a patient previously diagnosed as having a type 1a glycogen storage disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号