首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   28篇
  国内免费   1篇
  256篇
  2023年   1篇
  2022年   16篇
  2021年   18篇
  2020年   6篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   17篇
  2015年   6篇
  2014年   15篇
  2013年   20篇
  2012年   14篇
  2011年   14篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   10篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1973年   3篇
  1972年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有256条查询结果,搜索用时 0 毫秒
11.
High temperature strongly hampers the plant growth particularly at early growth stages. In this study, changes in some physiological and anatomical characteristics and possibility of mitigating the adversities of heat stress by soaking sugarcane nodal buds in 20 mM proline and glycinebetaine (GB) solutions have been explored. Heat stress reduced the rate of bud sprouting nonetheless soaking the setts in proline followed by GB was beneficial. In addition, heat stress reduced the bud fresh and dry weights, generated H2O2, reduced the tissue levels of K+ and Ca2+, while increased the osmolytes synthesis in a time course manner. Heat stress also delayed the emergence and expansion of new bud leaves, by restricting the number and area of mesophyll cells. It also caused poor and aberrant development and diffused appearance of mesophyll cells and vascular bundles in the bud leaves. However, soaking of buds in proline and GB solutions substantially reduced the H2O2 production, improved the accumulation of soluble sugars and protected the developing tissues from heat stress effects; although proline was more effective than GB. Correlations of various attributes indicated that soaking in GB and proline restricted the H2O2 generation, improved K+ and Ca2+ contents, and increased the concentrations of free proline, GB and soluble sugars eventually improving the heat tolerance of buds. Cost-benefit analysis showed that, considering increase in sprouting of buds, soaking in 20 mM solution of both osmoprotectants is economical.  相似文献   
12.
International Journal of Peptide Research and Therapeutics - Klebsiella oxytoca is a gram-negative bacterium. It is opportunistic in nature and causes hospital acquired infections....  相似文献   
13.
Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.  相似文献   
14.
The C-terminal domains of the mammalian DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b harbor all the conserved motifs characteristic for cytosine-C5 methyltransferases. Whereas the isolated catalytic domain of Dnmt1 is inactive, we show here that the C-terminal domains of Dnmt3a and Dnmt3b are catalytically active. Neither Dnmt3a nor Dnmt3b shows a significant preference for the satellite 2 sequence, although Dnmt3b is required for methylation of these regions in vivo. However, the catalytic domain of Dnmt3a methylates DNA in a distributive reaction, whereas Dnmt3b is processive, which accelerates methylation of macromolecular DNA in vitro. This property could make Dnmt3b a preferred enzyme for methylation at satellite 2 repeats, since they are highly CG-rich. We have also analyzed the catalytic activities of six different mutations found in ICF (immunodeficiency, centromeric instability, and facial abnormalities) patients in the catalytic domain of Dnmt3b. Five of them display catalytic activities reduced by 10-50-fold; one mutant was inactive in our assay (residual activity <1%). These results confirm that a reduced catalytic activity of Dnm3b causes ICF. However, the mutations in general do not completely abrogate catalytic activity. This finding may explain why ICF patients are viable, whereas nmt3b knock-out mice die during embryogenesis.  相似文献   
15.
BackgroundHigh salt consumption is an important risk factor of elevated blood pressure. In Bangladesh about 20 million people are at high risk of hypertension due to climate change induced saline intrusion in water. The objective of this study is to assess beliefs, perceptions, and practices associated with salt consumption in coastal Bangladesh.MethodsThe study was conducted in Chakaria, Bangladesh between April-June 2011. It was a cross sectional mixed method study. For the qualitative study 6 focus group discussions, 8 key informant interviews, 60 free listing exercises, 20 ranking exercises and 10 observations were conducted. 400 adults were randomly selected for quantitative survey. For analysis we used SPSS for quantitative data, and Anthropac and Nvivo for qualitative data.ResultsSalt was described as an essential component of food with strong cultural and religious roots. People described both health benefits and risks related to salt intake. The overall risk perception regarding excessive salt consumption was low and respondents believed that the cooking process can render the salt harmless. Respondents were aware that salt is added in many foods even if they do not taste salty but did not recognize that salt can occur naturally in both foods and water.ConclusionsIn the study community people had low awareness of the risks associated with excess salt consumption and salt reduction strategies were not high in their agenda. The easy access to and low cost of salt as well as unrecognised presence of salt in drinking water has created an environment conducive to excess salt consumption. It is important to design general messages related to salt reduction and test tailored strategies especially for those at high risk of hypertension.  相似文献   
16.
Seven murine leukemia virus field isolates (uncloned) from wild mice (Musmusculus) of four widely separated areas in southern California show an unusually wide in vitro host range. They replicate well in human, feline, canine, guinea pig, rabbit, rat, and mouse cells, whereas bovine, hamster, and avian cells are resistant. Since this host range includes that of both mouse tropic (ecotropic) and xenotropic murine leukemia viruses, they are designated as "amphotropic". No purely xenotropic virus component is detectable in these field isolates. They may represent the "wild" or ancestral viruses from which the ecotropic and xenotrophic murine leukemia virus strains of laboratory mice have been derived.  相似文献   
17.
The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non‐foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful.  相似文献   
18.
Microalgae biomass is considered an important feedstock for biofuels and other bioactive compounds due to its faster growth rate, high biomass production and high biomolecules accumulation over first and second-generation feedstock. This research aimed to maximize the specific growth rate of fresh water green microalgae Closteriopsis acicularis, a member of family Chlorellaceae under the effect of pH and phosphate concentration to attain enhanced biomass productivity. This study investigates the individual and cumulative effect of phosphate concentration and pH on specific growth characteristics of Closteriopsis acicularis in autotrophic mode of cultivation for bioethanol production. Central-Composite Design (CCD) strategy and Response Surface Methodology (RSM) was used for the optimization of microalga growth and ethanol production under laboratory conditions. The results showed that high specific growth rate and biomass productivity of 0.342 day−1 and 0.497 g L−1 day−1 respectively, were achieved at high concentration of phosphate (0.115 g L−1) and pH (9) at 21st day of cultivation. The elemental composition of optimized biomass has shown enhanced elemental accumulation of certain macro (C, O, P) and micronutrients (Na, Mg, Al, K, Ca and Fe) except for nitrogen and sulfur. The Fourier transform infrared spectroscopic analysis has revealed spectral peaks and high absorbance in spectral range of carbohydrates, lipids and proteins, in optimized biomass. The carbohydrates content of optimized biomass was observed as 58%, with 29.3 g L−1 of fermentable sugars after acid catalyzed saccharification. The bioethanol yield was estimated as 51 % g ethanol/g glucose with maximum of 14.9 g/L of bioethanol production. In conclusion, it can be inferred that high specific growth rate and biomass productivity can be achieved by varying levels of phosphate concentration and pH during cultivation of Closteriopsis acicularis for improved yield of microbial growth, biomass and bioethanol production.  相似文献   
19.
Bis-Schiff bases 127 have been synthesized and their in vitro antiglycation potential has been evaluated. Compounds 21 (IC50 = 243.95 ± 4.59 μM), 20 (IC50 = 257.61 ± 5.63 μM), and 7 (IC50 = 291.14 ± 2.53 μM) showed an excellent antiglycation activity better than the standard (rutin, IC50 = 294.46 ± 1.50 μM). This study has identified a series of potential molecules as antiglycation agents. A structure–activity relationship has been studied, and all the compounds were characterized by spectroscopic techniques.  相似文献   
20.
Yam anthracnose is caused by the pathogen Colletotrichum gloeosporioides Penz. and has been identified as the most important biotic constraint to yam production worldwide. Rapid assessment of the disease is vital to its effective diagnosis and management. In this study, tissue-cultured yam plantlets of five lines of Dioscorea alata and nine of D. rotundata were rapidly assessed for their reactions to two isolates of yam anthracnose. The plantlets, obtained from meristem of the nodal cuttings, were grown for 8?weeks on Murashige and Skoog (MS) basal medium, acclimatised for 3?weeks, hardened for an additional 3?weeks, arranged in screen house in completely randomised design and sprayed with spore inocula prepared from 7?day-old culture of the two strains of Colletotrichum gloeosporioidies Penz. The relative resistance of the different Dioscorea spp. was evaluated using three disease indices – severity at seventh day after inoculation, SD7; area under disease progress curve, AUDPC; and disease severity rate, Rd. A modified rank-sum classification method put TDa 1425 and TDr 2040, with rank sum of 2.0 each, as resistant. TDr 2121, TDr 2287 and TDr 2048 were susceptible with rank sum of 27.50, 25.50 and 24.50, respectively. Dioscorea alata TDa 1425 and Dioscorea rotundata TDr 2040 were recommended in areas endemic with yam anthracnose, and also as parent lines while breeding for resistance to anthracnose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号