首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   6篇
  42篇
  2021年   2篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  1995年   1篇
  1993年   3篇
  1992年   2篇
  1982年   1篇
  1973年   1篇
排序方式: 共有42条查询结果,搜索用时 11 毫秒
11.
Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.  相似文献   
12.
Extracts of Laetia procera (Flacourtiaceae) displayed significant in vitro activity against Plasmodium falciparum. P. falciparum bioassay guided fractionation of a trunk bark extract of this plant led to the isolation of six clerodane diterpenoids (1-6) and a butanolide (7). Five of these compounds are new and called Laetiaprocerine A-D (3-6) and Laetianolide A (7). Their structures were established on the basis of 1D and 2D NMR experiments. Absolute configurations of 1 and 2 were determined by a modified Mosher's method and the absolute configuration of 5 by chemical correlation. The clerodane diterpenoids displayed activities against P. falciparum with an IC50 down to 0.5 microM on FCb1 and F32 strains, and also cytotoxicity toward human tumor cell line MCF7. The most active compound showed a selectivity index of 6.8. Some of these compounds also displayed activities against Leishmania amazonensis amastigote axenic stages and promastigote.  相似文献   
13.
14.
Several enzymes have evolved as sensors in signal transduction pathways to control gene expression, thereby allowing bacteria to adapt efficiently to environmental changes. We recently identified the master regulator of cysteine metabolism in Bacillus subtilis, CymR, which belongs to the poorly characterized Rrf2 family of regulators. We now report that the signal transduction mechanism controlling CymR activity in response to cysteine availability involves the formation of a stable complex with CysK, a key enzyme for cysteine biosynthesis. We carried out a comprehensive quantitative characterization of this regulator-enzyme interaction by surface plasmon resonance and analytical ultracentrifugation. We also showed that O-acetylserine plays a dual role as a substrate of CysK and as an effector modulating the CymR-CysK complex formation. The ability of B. subtilis CysK to bind to CymR appears to be correlated to the loss of its capacity to form a cysteine synthase complex with CysE. We propose an original model, supported by the determination of the intracellular concentrations of the different partners, by which CysK positively regulates CymR in sensing the bacterial cysteine pool.  相似文献   
15.
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure—independent of infectious prion conformation—to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-β, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP''s neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson disease or tauopathy. Deletion of PrP in one of two Huntington disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.Key words: neurodegeneration, protein misfolding, PrP, home cage, stroke  相似文献   
16.
Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation to ensure that daughter cells are properly wrapped in CPS.  相似文献   
17.
The symporter YhcL and two ATP binding cassette transporters, YtmJKLMN and YckKJI, were shown to mediate L-cystine uptake in Bacillus subtilis. A triple DeltayhcL DeltaytmJKLMN DeltayckK mutant was unable to grow in the presence of L-cystine and to take up L-cystine. We propose that yhcL, ytmJKLMN, and yckKJI should be renamed tcyP, tcyJKLMN, and tcyABC, respectively. The L-cystine uptake by YhcL (K(m) = 0.6 microM) was strongly inhibited by seleno-DL-cystine, while the transport due to the YtmJKLMN system (K(m) = 2.5 microM) also drastically decreased in the presence of DL-cystathionine, L-djenkolic acid, or S-methyl-L-cysteine. Accordingly, a DeltaytmJKLMN mutant did not grow in the presence of 100 microM DL-cystathionine, 100 microM L-djenkolic acid, or 100 microM S-methyl-L-cysteine. The expression of the ytmI operon and the yhcL gene was regulated in response to sulfur availability, while the level of expression of the yckK gene remained low under all the conditions tested.  相似文献   
18.
A platform of thin polymer coatings was introduced for the functional modulation of immobilized bioactive molecules at solid/liquid interfaces. The approach is based on covalently attached alternating maleic acid anhydride copolymers with a variety of comonomers and extended through conversion of the anhydride moieties by hydrolysis, reaction with functional amines, and other conversions of the anhydride moieties. We demonstrate that these options permit control of the physicochemical constraints for bioactive molecules immobilized at interfaces to influence important performance characteristics of biofunctionalized materials for medical devices and molecular diagnostics. Examples concern the impact of the substrate-anchorage of fibronectin on the formation of cell-matrix adhesions, the orientation of endothelial cells according to lateral anti-adhesive micropatterns using grafted poly(ethylene oxide), and the spacer-dependent activity of immobilized synthetic thrombin inhibitors.  相似文献   
19.
20.
Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat "fixed volume" model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号