首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   17篇
  国内免费   1篇
  2022年   5篇
  2021年   5篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   2篇
  2015年   9篇
  2014年   7篇
  2013年   10篇
  2012年   14篇
  2011年   14篇
  2010年   11篇
  2009年   12篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   9篇
  2000年   2篇
  1999年   10篇
  1998年   8篇
  1996年   5篇
  1995年   11篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   1篇
  1972年   3篇
  1950年   1篇
  1946年   1篇
  1941年   1篇
  1940年   1篇
排序方式: 共有285条查询结果,搜索用时 31 毫秒
81.
82.
Plant-feeding insects have been recently found to use microbes to manipulate host plant physiology and morphology. Gall midges are one of the largest groups of insects that manipulate host plants extensively. Hessian fly (HF, Mayetiola destructor) is an important pest of wheat and a model system for studying gall midges. To examine the role of bacteria in parasitism, a systematic analysis of bacteria associated with HF was performed for the first time. Diverse bacteria were found in different developmental HF stages. Fluorescent in situ hybridization detected a bacteriocyte-like structure in developing eggs. Bacterial DNA was also detected in eggs by PCR using primers targeted to different bacterial groups. These results indicated that HF hosted different types of bacteria that were maternally transmitted to the next generation. Eliminating bacteria from the insect with antibiotics resulted in high mortality of HF larvae, indicating that symbiotic bacteria are essential for the insect to survive on wheat seedlings. A preliminary survey identified various types of bacteria associated with different HF stages, including the genera Enterobacter, Pantoea, Stenotrophomonas, Pseudomonas, Bacillus, Ochrobactrum, Acinetobacter, Alcaligenes, Nitrosomonas, Arcanobacterium, Microbacterium, Paenibacillus, and Klebsiella. Similar bacteria were also found specifically in HF-infested susceptible wheat, suggesting that HF larvae had either transmitted bacteria into plant tissue or brought secondary infection of bacteria to the wheat host. The bacteria associated with wheat seedlings may play an essential role in the wheat-HF interaction.  相似文献   
83.

Background

Environmental variables such as moisture availability are often important in determining species prevalence and intraspecific diversity. The population genetic structure of dominant plant species in response to a cline of these variables has rarely been addressed. We evaluated the spatial genetic structure and diversity of Andropogon gerardii populations across the U.S. Great Plains precipitation gradient, ranging from approximately 48 cm/year to 105 cm/year.

Methodology/Principal Findings

Genomic diversity was evaluated with AFLP markers and diversity of a disease resistance gene homolog was evaluated by PCR-amplification and digestion with restriction enzymes. We determined the degree of spatial genetic structure using Mantel tests. Genomic and resistance gene homolog diversity were evaluated across prairies using Shannon''s index and by averaging haplotype dissimilarity. Trends in diversity across prairies were determined using linear regression of diversity on average precipitation for each prairie. We identified significant spatial genetic structure, with genomic similarity decreasing as a function of distance between samples. However, our data indicated that genome-wide diversity did not vary consistently across the precipitation gradient. In contrast, we found that disease resistance gene homolog diversity was positively correlated with precipitation.

Significance

Prairie remnants differ in the genetic resources they maintain. Selection and evolution in this disease resistance homolog is environmentally dependent. Overall, we found that, though this environmental gradient may not predict genomic diversity, individual traits such as disease resistance genes may vary significantly.  相似文献   
84.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide. It is essential to identify new genes for effective resistance against the disease. Durum wheat PI 480148, originally from Ethiopia, was resistant in all seedling tests with several predominant Pst races in the US under controlled greenhouse conditions and at multiple locations subject to natural infection for several years. To map the resistance gene(s) and to transfer it to common wheat, a cross was made between PI 480148 and susceptible common wheat genotype Avocet S (AvS). Resistant F3 plants with 42 chromosomes were selected cytologically and by testing with Pst race PST-100. A total of 157 F4 plants from a single F3 plant with 2n = 42 tested with PST-100 segregated in a 3 resistant: 1 susceptible ratio, indicating that a single dominant gene from PI 480148 conferred resistance. Using the F3:4 population and the resistance gene-analog polymorphism (RGAP) and simple sequence repeat (SSR) markers, the gene was mapped to the long arm of chromosome 2B. SSR marker Xwmc441 and RGAP marker XLRRrev/NLRRrev 350 flanked the resistance gene by 5.6 and 2.7 cM, respectively. The effective resistance of the gene to an Australian Pst isolate virulent to Yr5, which is also located on 2BL and confers resistance to all US Pst races, together with an allelism test of the two genes, indicated that the gene from PI 480148 is different from Yr5 and should be a new and useful gene for resistance to stripe rust. Resistant common wheat lines with plant types similar to AvS were selected for use in breeding programs.  相似文献   
85.
Egg strings and larvae of Hochstetter's frog (Leiopelma hochstetteri) were located at three widely separated North Island sites: in seeps at Brynderwyns in December 2004, in an open pool at Wharerino in March 2009, and in an underground pool near the Kaipawa Track, Coromandel, in late May 2009. Ten egg strings were also laid by captive frogs in water courses at Hamilton Zoo in April 2009. All egg strings held from 11 to 13 eggs. The egg strings laid in the Brynderwyns were regularly observed until metamorphosis was completed in March 2005. Twenty-four swimming larvae emerged from 25 capsules at c. 40 days after discovery, and at least 14 froglets were produced at c. 90 days. All of them developed in darkness, in a 120 ml pool <30 mm deep. The emerged froglets ranged from 9.8 to 10.8 mm snout-vent length. The detection of eggs, larvae and <11 mm froglets indicates that the egg laying period is at least from late September to May.  相似文献   
86.
87.
88.
89.
Camelina (Camelina sativa L.) is a low-input oilseed crop of recent interest for sustainable biofuel production. As a relatively new crop in modern agriculture, considerable agronomic and regulatory problems need to be overcome. A common and troublesome problem is sensitivity to residues of acetolactate synthase (ALS) inhibitor herbicides in soils. To develop resistance to those residues, camelina seed were mutagenized by exposure to 0.3% ethyl methane sulfonate and screened at the M2 generation for increased resistance to imazethapyr and sulfosulfuron. Five lines with resistance were identified and characterized. Four mutants, identified in a screen for imazethapyr resistance (IM1, IM6, IM10, and IM18), appeared phenotypically identical and were controlled by the same co-dominant gene. One mutant identified in a screen for sulfosulfuron resistance was phenotypically different but also appears to be controlled by a single co-dominant gene. Further analysis with the IM1 and SM4 mutants confirmed they had increased resistance to imazethapyr, sulfosulfuron, and flucarbazone, with the resistance in the SM4 mutant being the highest. Compared to the wild type, doses of approximately 200 times more imazethapyr, 30 times more sulfosulfuron, and seven times as much flucarbazone were required to reduce plant growth by 50%. Sequence analysis of ALS genes from the SM4 line identified at least eight different genes or alleles. An allele associated with the highest levels of resistance was created by a single base substitution creating an amino acid shift previously found to cause ALS inhibitor resistance in yeast and tobacco.  相似文献   
90.
The vertebrate A-P axis is a time axis. The head is made first and more and more posterior levels are made at later and later stages. This is different to the situation in most other animals, for example, in Drosophila. Central to this timing is Hox temporal collinearity (see below). This occurs rarely in the animal kingdom but is characteristic of vertebrates and is used to generate the primary axial Hox pattern using time space translation and to integrate successive derived patterns (see below). This is thus a different situation than in Drosophila, where the primary pattern guiding Hox spatial collinearity is generated externally, by the gap and segmentation genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号