首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   17篇
  国内免费   1篇
  2022年   5篇
  2021年   5篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   2篇
  2015年   9篇
  2014年   7篇
  2013年   10篇
  2012年   14篇
  2011年   14篇
  2010年   11篇
  2009年   12篇
  2008年   11篇
  2007年   6篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   9篇
  2000年   2篇
  1999年   10篇
  1998年   8篇
  1996年   5篇
  1995年   11篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1973年   1篇
  1972年   3篇
  1950年   1篇
  1946年   1篇
  1941年   1篇
  1940年   1篇
排序方式: 共有285条查询结果,搜索用时 46 毫秒
11.
We address the question of whether genetic reassortment events, including unequal crossing over and gene conversion, at the Rp1 complex are capable of generating novel resistance specificities that were not present in the parents. Some 176 events involving genetic reassortment within the Rp1 complex were screened for novel resistance specificities with a set of 11 different rust biotypes. Most (150/176) of the events were susceptible to all tested rust biotypes, providing no evidence for new specificities. Eleven events selected as double-resistant recombinants, when screened with the 11 test biotypes, showed the combined resistance of the two parental types consistent with a simple recombination and pyramiding of the parental resistances. Nine events selected either as having partial resistance or complete susceptibility to a single biotype possessed resistance to a subset of the biotypes that the parents were resistant to, suggesting segregation of resistance genes present in the parental Rp1 complex. Four events gave rise to novel specificities being resistant to at least one rust biotype to which both parents were susceptible. All four had flanking marker exchange, demonstrating that crossing over within the Rp1 complex is associated with the appearance of new rust resistance specificities.  相似文献   
12.
13.
14.
15.
Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease.  相似文献   
16.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   
17.
The aim of this research was to determine whether all memory T cells have the same propensity to migrate to the joint in patients with juvenile idiopathic arthritis. Paired synovial fluid and peripheral blood mononuclear cell proliferative responses to a panel of antigens were measured and the results correlated with a detailed set of laboratory and clinical data from 39 patients with juvenile idiopathic arthritis. Two distinct patterns of proliferative response were found in the majority of patients: a diverse pattern, in which synovial fluid responses were greater than peripheral blood responses for all antigens tested; and a restricted pattern, in which peripheral blood responses to some antigens were more vigorous than those in the synovial fluid compartment. The diverse pattern was generally found in patients with a high acute phase response, whereas patients without elevated acute phase proteins were more likely to demonstrate a restricted pattern. We propose that an association between the synovial fluid T cell repertoire and the acute phase response suggests that proinflammatory cytokines may influence recruitment of memory T cells to an inflammatory site, independent of their antigen specificity. Additionally, increased responses to enteric bacteria and the presence of αEβ7 T cells in synovial fluid may reflect accumulation of gut associated T cells in the synovial compartment, even in the absence of an elevated acute phase response. This is the first report of an association between the acute phase response and the T cell population recruited to an inflammatory site.  相似文献   
18.
Rates and patterns of evolution in partial sequences of five mitochondrial genes (cytochrome b, ATPase 6, NADH dehydrogenase subunit 5, tRNA(Glu), and the control region) were compared among taxa in the passerine bird genera Fringilla and Carduelis. Rates of divergence do not vary significantly among genes, even in comparisons with the control region. Rate variation among lineages is significant only for the control region and NADH dehydrogenase subunit 5, and patterns of variation are consistent with the expectations of neutral theory. Base composition is biased in all genes but is stationary among lineages, and there is evidence for directional mutation pressure only in the control region. Despite these similarities, patterns of substitution differ among genes, consistent with alternative regimes of selective constraint. Rates of nonsynonymous substitution are higher in NADH dehydrogenase subunit 5 than in other protein-coding genes, and transitions exist in elevated proportions relative to transversions. Transitions appear to accumulate linearly with time in tRNA(Glu), and despite exhibiting the highest overall rate of divergence among species, there are no transversional changes in this gene. Finally, for resolving phylogenetic relationships among Fringilla taxa, the combined protein-coding data are broadly similar to those of the control region in terms of phylogenetic informativeness and statistical support.   相似文献   
19.
BiP is found in association with calreticulin, both in the presence and absence of endoplasmic reticulum stress. Although the BiP-calreticulin complex can be disrupted by ATP, several properties suggest that the calreticulin associated with BiP is neither unfolded nor partially or improperly folded. (1) The complex is stable in vivo and does not dissociate during 8 hr of chase. (2) When present in the complex, calreticulin masks epitopes at the C terminus of BiP that are not masked when BiP is bound to an assembly-defective protein. And (3) overproduction of calreticulin does not lead to the recruitment of more BiP into complexes with calreticulin. The BiP-calreticulin complex can be disrupted by low pH but not by divalent cation chelators. When the endoplasmic reticulum retention signal of BiP is removed, complex formation with calreticulin still occurs, and this explains the poor secretion of the truncated molecule. Gel filtration experiments showed that BiP and calreticulin are present in distinct high molecular weight complexes in which both molecules interact with each other. The possible functions of this complex are discussed.  相似文献   
20.

Background  

Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号