首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7372篇
  免费   526篇
  国内免费   7篇
  7905篇
  2023年   35篇
  2022年   69篇
  2021年   124篇
  2020年   72篇
  2019年   117篇
  2018年   181篇
  2017年   174篇
  2016年   269篇
  2015年   407篇
  2014年   397篇
  2013年   495篇
  2012年   610篇
  2011年   589篇
  2010年   386篇
  2009年   317篇
  2008年   416篇
  2007年   402篇
  2006年   344篇
  2005年   311篇
  2004年   336篇
  2003年   269篇
  2002年   246篇
  2001年   139篇
  2000年   89篇
  1999年   93篇
  1998年   79篇
  1997年   42篇
  1996年   56篇
  1995年   44篇
  1994年   41篇
  1993年   32篇
  1992年   54篇
  1991年   36篇
  1990年   40篇
  1989年   43篇
  1988年   31篇
  1987年   37篇
  1986年   26篇
  1985年   29篇
  1984年   27篇
  1983年   23篇
  1982年   21篇
  1981年   23篇
  1979年   22篇
  1977年   24篇
  1976年   26篇
  1975年   27篇
  1974年   19篇
  1973年   22篇
  1971年   18篇
排序方式: 共有7905条查询结果,搜索用时 15 毫秒
191.
S100 proteins comprise a multigene family of EF-hand calcium binding proteins that engage in multiple functions in response to cellular stress. In one case, the S100B protein has been implicated in oligodendrocyte progenitor cell (OPC) regeneration in response to demyelinating insult. In this example, we report that the mitochondrial ATAD3A protein is a major, high-affinity, and calcium-dependent S100B target protein in OPC. In OPC, ATAD3A is required for cell growth and differentiation. Molecular characterization of the S100B binding domain on ATAD3A by nuclear magnetic resonance (NMR) spectroscopy techniques defined a consensus calcium-dependent S100B binding motif. This S100B binding motif is conserved in several other S100B target proteins, including the p53 protein. Cellular studies using a truncated ATAD3A mutant that is deficient for mitochondrial import revealed that S100B prevents cytoplasmic ATAD3A mutant aggregation and restored its mitochondrial localization. With these results in mind, we propose that S100B could assist the newly synthesized ATAD3A protein, which harbors the consensus S100B binding domain for proper folding and subcellular localization. Such a function for S100B might also help to explain the rescue of nuclear translocation and activation of the temperature-sensitive p53val135 mutant by S100B at nonpermissive temperatures.The S100 proteins comprise a multigene family of low-molecular-weight EF-hand calcium binding and zinc binding proteins (5, 13, 16, 24, 33). To date, 19 different S100 proteins have been assigned to this protein family, and they show different degrees of similarity, ranging from 25 to 56% identity at the amino acid level. With S100B, S100P, and S100Z being the exceptions, the majority of the S100 genes are clustered on human chromosome 1q21 (33). Most S100 proteins serve as calcium sensor proteins that, upon activation, regulate the function and/or subcellular distribution of specific target proteins (13, 33, 47), and they are characterized by common structural motifs, including two low-affinity (KD [equilibrium dissociation constant] of ∼10 μM to 100 μM) helix-loop-helix calcium binding domains (EF hands) that are separated by a hinge region and flanked by amino- and carboxy-terminal domains. The carboxy-terminal domain is variable among S100 proteins, and it typically is the site that is responsible for the selective interaction of each individual S100 protein with specific target proteins (30). S100 proteins are often upregulated in cancers, in inflammation, and in response to cellular stress (14, 16), suggesting that they function in cell responses to stress situations. Consistent with this hypothesis, stress situations were necessary to reveal phenotypes associated with the S100 knockout in mice (11, 14, 33, 56). Moreover, recent observations revealed a new function for the S100 protein family that included their ability to assist and regulate multichaperone complex-ligand interactions (41, 50, 51).One member of the S100 protein family, S100B, has attracted much interest in the past few years because, like other proteins implicated in neurodegeneration (e.g., amyloid, superoxide dismutase, and dual-specificity tyrosine phosphorylation-regulated kinase 1A), its gene is located within a segment of chromosome 21, which is trisomic in Down''s syndrome (DS). Its expression in the brain of mammals coincides with defined periods of central nervous system (CNS) maturation and cell differentiation (43). In oligodendrocyte progenitor cells (OPC), S100B expression is associated with differentiation, and S100B contributes to OPC differentiation in response to demyelinating insult (11). To understand the contribution of S100B to OPC differentiation, we searched for high-affinity S100B target proteins in this cell type by using far-Western analysis. A major and highly specific S100B target protein was identified, the mitochondrial ATAD3A protein.ATAD3A belongs to a new family of eukaryote-specific mitochondrial AAA+ ATPase proteins (17). In the human genome, two genes, Atad3A and Atad3B, are located in tandem on chromosome 1p36.33. The Atad3A gene is ubiquitous among multicellular organisms but absent in yeast. The Atad3B gene is specific to the human genome (27). ATAD3A is a mitochondrial protein anchored into the mitochondrial inner membrane (IM) at contact sites with the outer membrane (OM). Thanks to its simultaneous interaction with the two membranes, ATAD3A regulates mitochondrial dynamics at the interface between the inner and outer membranes and controls diverse cell responses ranging from mitochondrial metabolism, cell growth, and mitochondrial fission 20a, 25). The ATAD3A protein has also been identified as a mitochondrial DNA binding protein (23) and as a cell surface antigen in some human tumors (20, 21). The plasma membrane localization of ATAD3A in tumor cells is suggestive that ATAD3A mitochondrial routing can be compromised in pathological situations such as cancer. To understand the functional response resulting from the interaction between S100B and ATAD3A, we first characterized the minimal interaction domain on ATAD3A for S100B binding using thermodynamic studies of wild-type and ATAD3A variants as well as via nuclear magnetic resonance (NMR) spectroscopy techniques. These studies allowed us to further refine the consensus S100B binding motif, which is conserved in several other S100B target proteins, including the p53 protein and several newly discovered target proteins associated with the cell translational machinery. We next analyzed the cellular interaction of S100B with truncated ATAD3A mutants that harbor the S100B binding domain but that are deficient for mitochondrial import. These studies revealed that S100B could assist ATAD3A mutant proteins during cytoplasmic processing by preventing dysfunctional aggregation events. Our results are discussed in light of the possible function of S100B in assisting the cytoplasmic processing of proteins for proper folding and subcellular localization.  相似文献   
192.
Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH   总被引:16,自引:0,他引:16  
Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.  相似文献   
193.
194.
Platelets are not only central actors of hemostasis and thrombosis but also of other processes including inflammation, angiogenesis, and tissue regeneration. Accumulating evidence indicates that these “non classical” functions of platelets do not necessarily rely on their well-known ability to form thrombi upon activation. This suggests the existence of non-thrombotic alternative states of platelets activation. We investigated this possibility through dose-response analysis of thrombin- and collagen-induced changes in platelet phenotype, with regards to morphological and functional markers of platelet activation including shape change, aggregation, P-selectin and phosphatidylserine surface expression, integrin activation, and release of soluble factors. We show that collagen at low dose (0.25 µg/mL) selectively triggers a platelet secretory phenotype characterized by the release of dense- and alpha granule-derived soluble factors without causing any of the other major platelet changes that usually accompany thrombus formation. Using a blocking antibody to glycoprotein VI (GPVI), we further show that this response is mediated by GPVI. Taken together, our results show that platelet activation goes beyond the mechanisms leading to platelet aggregation and also includes alternative platelet phenotypes that might contribute to their thrombus-independent functions.  相似文献   
195.
To investigate the associations of uncoupling protein (UCP)2 and UCP3 gene variants with overweight and related traits, we genotyped UCP2−866G>A, UCP2Ala55Val, and UCP3−55C>T in 737 Korean children and 732 adults and collected data regarding anthropometric status and blood biochemistry. Information concerning the children's lifestyles and dietary habits was collected. The UCP2−866G>A and UCP3−55C>T gene variants showed significant associations with BMI level, waist circumference, and body weight in the children but not in the adults. Compared with −866GG carriers, the −866GA and AA carriers showed a strong decreasing trend in the risk for overweight (odds ratio (OR), 0.67; 95% confidence interval (CI), 0.45–1.01; P = 0.053). In comparison with UCP3−55CC carriers, children carrying −55CT and TT showed a significant reduction in the risk of overweight (OR, 0.67; 95% CI, 0.46–0.98; P = 0.039). There was also evidence of interactions between the effects of the combined UCP2−UCP3 genotype and obesity‐related metabolic traits. The greatest protective effect against overweight was seen in those with the combined genotype non‐UCP2−866GG and non‐UCP3−55CC, as compared with those carrying both UCP2−866GG and UCP3−55CC (OR, 0.60; 95% CI, 0.38–0.95; P = 0.030). In the subgroup with a low level of physical activity, UCP3−55CC carriers had higher BMI values than UCP3−55T carriers (16.6 ± 2.3 kg/m2 vs. 16.1 ± 1.9 kg/m2, P = 0.016). Low physical activity may aggravate the susceptibility to overweight in UCP2−866GG and UCP3−55CC carriers.  相似文献   
196.
TGF‐β3, TβR‐I, and TGF‐β‐activated Smad2 has been suggested to be a series of signaling molecules for secondary palate fusion. In this article, we show that a gene induced by TGF‐β, βig‐h3, is coincidentally expressed with TGF‐β3 in medial edge epithelial (MEE) cells undergoing apoptosis during normal palatal fusion. βig‐h3 was also highly expressed in the areas of post‐weaning mammary gland cells and developing phalangeal joints in which TGF‐β3 or BMP‐4‐induced apoptosis occurs, respectively. Blocking of βig‐h3 expression in E12.5 embryos with antisense oligodeoxynucleotides (ODN) resulted in cleft of the secondary palate in 84% of the treated mice that were born. Moreover, the antisense ODN treatment resulted in a failure of apoptosis in the MEE between palatal shelves in physical contact in organ culture. We conclude that βig‐h3 expression in the MEE is stimulated by TGF‐β3, causes cell death, and consequently results in complete fusion of the apposed palatal shelves. J. Cell. Biochem. 107: 818–825, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
197.
Five polymeric metal(II)-benzoate complexes of formula [Mn(O2CPh)2(CH3OH)2(bpa)]n (1-Mn), [Co(O2CPh)2(H2O)(bpa)1.5]n (2-Co), [Ni(O2CPh)2(H2O)(bpa)1.5]n (3-Ni), [Cu(O2CPh)2(CH3OH)2(bpa)]n (4-Cu), and [Cd(O2CPh)2(bpa)1.5]n (6-Cd) have been synthesized and characterized (bpa = 1,2-bis(4-pyridyl)ethane). They showed two kinds of structures: parallelogram-like two-dimensional sheets for Co, Ni, and Cd, and one-dimensional chains for Mn, Cu, and Zn. Since similar structures provide similar coordination geometries, the structures depend on the coordination geometries of metal ions. The compounds 1-Mn, 2-Co, 4-Cu, 5-Zn, and 6-Cd have catalyzed efficiently the transesterification of a variety of esters, while 3-Ni has displayed a very slow conversion. The reactivity of catalyst 6-Cd containing Cd ion, well known as an inert metal ion for the ligand substitution, was found to be comparable to that of 5-Zn. The reactivities of the compounds used in this study are in the order of 5-Zn > 6-Cd > 1-Mn > 4-Cu > 2-Co ? 3-Ni, indicating that the non-redox metal-containing compounds (5-Zn and 6-Cd) show better activity than the redox-active metal-containing compounds (1-Mn, 4-Cu, 2-Co, and 3-Ni).  相似文献   
198.
Two economically important characters, starch content and cassava bacterial blight resistance, were targeted to generate a large collection of cassava ESTs. Two libraries were constructed from cassava root tissues of varieties with high and low starch contents. Other libraries were constructed from plant tissues challenged by the pathogen Xanthomonas axonopodis pv.manihotis. We report here the single pass sequencing of 11 954 cDNA clones from the 5’ ends, including 111 from the 3’ ends. Cluster analysis permitted the identification of a unigene set of 5700 sequences. Sequence analyses permitted the assignment of a putative functional category for 37% of sequences whereas ~ 16% sequences did not show any significant similarity with other proteins present in the database and therefore can be considered as cassava specific genes. A group of genes belonging to a large multigene family was identified. We characterize a set of genes detected only in infected libraries putatively involved in the defense response to pathogen infection. By comparing two libraries obtained from cultivars contrasting in their starch content a group of genes associated to starch biosynthesis and differentially expressed was identified. This is the first large cassava EST resource developed today and publicly available thus making a significant contribution to genomic knowledge of cassava.  相似文献   
199.
200.
Dectin-1 is the archetypal signaling, non-Toll-like pattern recognition receptor that plays a protective role in immune defense to Candida albicans as the major leukocyte receptor for beta-glucans. Dectin-1-deficiency is associated with impaired recruitment of inflammatory leukocytes and inflammatory mediator production at the site of infection. In this study, we have used mice to define the mechanisms that regulate the dectin-1-mediated inflammatory responses. Myeloid cell activation by dectin-1 is controlled by inherent cellular programming, with distinct macrophage and dendritic cell populations responding differentially to the engagement of this receptor. The inflammatory response is further modulated by the progression of the phagocytosis, with "frustrated phagocytosis" resulting in dramatically augmented inflammatory responses. These studies demonstrate that dectin-1 in isolation is sufficient to drive a potent inflammatory response in a context-dependent manner. This has implications for the mechanism by which myeloid cells are activated during fungal infections and the processes involved in the therapeutic manipulation of the immune system via exogenous dectin-1 stimulation or blockade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号