首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5201篇
  免费   439篇
  国内免费   297篇
  5937篇
  2024年   11篇
  2023年   48篇
  2022年   132篇
  2021年   216篇
  2020年   133篇
  2019年   184篇
  2018年   219篇
  2017年   147篇
  2016年   236篇
  2015年   331篇
  2014年   377篇
  2013年   342篇
  2012年   472篇
  2011年   441篇
  2010年   265篇
  2009年   252篇
  2008年   269篇
  2007年   257篇
  2006年   220篇
  2005年   200篇
  2004年   185篇
  2003年   167篇
  2002年   168篇
  2001年   101篇
  2000年   69篇
  1999年   71篇
  1998年   60篇
  1997年   43篇
  1996年   40篇
  1995年   35篇
  1994年   29篇
  1993年   23篇
  1992年   21篇
  1991年   27篇
  1990年   23篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   14篇
  1985年   16篇
  1983年   10篇
  1982年   6篇
  1981年   10篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1972年   5篇
  1971年   3篇
  1969年   3篇
排序方式: 共有5937条查询结果,搜索用时 15 毫秒
101.
102.
103.
Peptidoglycan recognition protein SA (PGRP‐SA) is a key pattern recognition receptor in the insect innate immune system. PGRP‐SA can bind to bacterial PGN and activate the Toll pathway, which triggers the expression and release of antimicrobial peptides to prevent bacterial infection. Here, we report the first structure of Apis mellifera PGRP‐SA from Hymenoptera at 1.86 Å resolution. The overall architecture of Am‐PGRP‐SA was similar to the Drosophila PGRP‐SA; however, the residues involved in PGN binding groove were not conserved, and the binding pocket was narrower. This structure gives insight into PGN binding characteristics in honeybees.  相似文献   
104.
在海拔2300m选择健康成年男性5人,急进抵海拔4660m,用多导监测仪分别在两地连续7h监测夜间睡眠、呼吸状态和血氧饱和度变化,进行自身对比。结果发现:(1)急进高海拔后,总睡眠时间、有效睡眠指数、Ⅲ~Ⅳ期深睡眠均较中度高原减少(p<0.01);总觉醒时间、Ⅰ~Ⅱ期浅睡眠高海拔较中度高原增多(p<0.05):(2)急进高海拔后,有3名健康人出现周期性呼吸,其中1名健康者出现周期性呼吸119次,伴有中枢性睡眠呼吸暂停,最低Sao_2为78%;(3)同海拔高度夜间睡眠时与清醒时Sao_2相比较,中度高原下降4.2%,高海拔下降11.2%(p<0.01);高海拔与中度高原夜间清醒时Sao_2相比较下降7.4%,睡眠时下降14.4%(p<0.001)。结果提示:(1)睡眠加重了高原人原有的低氧血症;(2)低氧血症导致睡眠结构的紊乱和睡眠质量的降低;(3)睡眠中出现的周期性呼吸,应视为机体的一种自我保护机制;(4)频发的周期性呼吸或睡眠呼吸暂停将影响大脑机能。  相似文献   
105.
Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 μg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.  相似文献   
106.
Field evaluation of juvenile in vitro embryo transfer (JIVET) in sheep   总被引:2,自引:0,他引:2  
The practicality of using juvenile in vitro embryo transfer (JIVET) on a field scale in China was evaluated in each of three seasons (summer, autumn and winter) from 2006 to 2007. A total of 102 donor Merino lambs (18 summer, 69 autumn and 15 winter) aged 4-8 weeks were stimulated with 4 x 40 mg FSH administered at 12h intervals plus 400 IU PMSG given at the time of the first FSH treatment. Overall, 89.2% (91/102) of the lambs exhibited follicle development and 79.1+/-65.5 (mean+/-S.D.) cumulus-oocyte complexes were recovered per donor lamb. Compared with the groups of summer (84.9+/-55.3) and autumn (83.6+/-70.8) lambs, the number of recovered cumulus-oocyte complexes was significantly decreased in winter (51.4+/-43.7; p<0.05). After recovery, the cumulus-oocyte complexes were matured and fertilized in vitro using frozen-thawed semen and culture in synthetic oviduct fluid medium to the 2-4-c stage of development, when they were transferred surgically in groups of 3-8 (5.33+/-1.47) to the ipsilateral uterine horn of a total of 603 synchronized recipients. The overall mean proportion of cumulus-oocyte complexes developing to 2-c embryos was 61.4% (4308/7013) and differed significantly between seasons (summer 38.5%, autumn 66.1%, winter 74.6%; p<0.01). Pregnancy rate assessed by ultrasound examination approximately 60 days after embryo transfer was 54.4% (328/603) overall, and 36.7% (221/603) of the recipients maintained their pregnancy to full-term, producing an average 1.49 (330/221) offspring, of which 1.21 (267/221) were viable and healthy lambs, per pregnant recipient. Pregnancy rate at day 60 was affected by season (summer 40.5%, autumn 56.7%, winter 55.7%; p<0.05), but did not differ significantly between seasons at full-term (summer 34.2%, autumn 38.9%, winter 30.4%; p>0.05). Based on the number of donors stimulated, the total number of offspring and viable progeny produced per donor lamb in autumn (5.81 and 4.87) was significantly (p<0.01) higher than that of summer (2.79 and 1.94) and winter (4.24 and 3.31). This study showed that each donor lamb after stimulation produced an average of 48.6 transferable embryos that resulted in 4.04 viable and healthy progeny. These results indicate that JIVET is a cost-effective method of multiplying desirable sheep genotypes in China.  相似文献   
107.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   
108.
A genetic evaluation of safflower germplasm collections derived from different geographical regions and countries will provide useful information for sustainable conservation and the utilization of genetic diversity. However, the molecular marker information is limited for evaluation of genetic diversity of safflower germplasm. In this study, we acquired 509 putative genomic SSR markers for sufficient genome coverage using next‐generation sequencing methods and characterized thirty polymorphic SSRs in safflower collection composed of 100 diverse accessions. The average allele number and expected heterozygosity were 2.8 and 0.386, respectively. Analysis of population structure and phylogeny based on thirty SSR profiles revealed genetic admixture between geographical regions contrary to genetic clustering. However, the accessions from Korea were genetically conserved in distinctive groups in contrast to other safflower gene pool. In conclusion, these new genomic SSRs will facilitate valuable studies to clarify genetic relationships as well as conduct population structure analyses, genetic map construction and association analysis for safflower.  相似文献   
109.
The objective of this study was to investigate the possible effect of demecolcine, a microtubule-disrupting reagent, on induced enucleation (IE) of sheep meiotically maturing oocytes. Immunofluorescent staining with anti-tubulin antibodies was used to examine the spindle status of the oocytes. When the oocytes with intact germinal vesicles (GV) were cultured in the medium containing various concentrations of demecolcine (0.01 to 0.4 microg.mL-1) for 20 to 22 h, the spindle microtubule organization and first polar body (PB1) extrusion were inhibited by demecolcine in a dose-dependent manner. The highest IE rate (58.1%) was from the treatment with 0.04 microg.mL-1 demecolcine. Demecolcine treatment applied after germinal vesicle breakdown (GVBD) or at metaphase (M) yielded a PB1 extrusion rate and IE efficiency similar to the treatment applied at the onset of maturation. Analysis by immunofluorescence showed that both nonspindle microtubules and spindle microtubules were significantly disorganized by demecolcine. Combination treatment with demecolcine and cycloheximide (CHX) or 6-dimethylaminopurine (6-DMAP) led to single pronuclear formation rather than PB1 extrusion. When demecolcine-treated oocytes were transferred into demecolcine-free medium, the ability to extrude PB1 was quickly restored and a 72.1% IE rate was obtained following such treatment. These results demonstrate that demecolcine can be used as a potential reagent for induced enucleation of sheep meiotically maturing oocytes and may greatly facilitate research in nuclear transfer.  相似文献   
110.
In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown. We used streptozotocin to make Wistar rats acutely diabetic and after 4 days examined the different processes that regulate cardiac GSH. Reduction in myocyte GSH in diabetic rats was accompanied by increased oxidative stress, excessive reactive oxygen species, and an elevated apoptotic cell death. The effect on GSH was not associated with any change in either synthesis or recycling, as both gamma-glutamylcysteine synthetase gene expression (responsible for bio syn thesis) and glutathione reductase activity (involved with GSH recycling) remained unchanged. However, gene expression of multidrug resistance protein 1, a transporter implicated in effluxing GSH during oxidative stress, was elevated. GSH conjugate efflux mediated by multidrug resistance protein 1 also increased in diabetic cardiomyocytes, an effect that was blocked using MK-571, a specific inhibitor of this transporter. As MK-571 also decreased oxidative stress in diabetic cardiomyocytes, an important role can be proposed for this transporter in GSH and reactive oxygen species homeostasis in the acutely diabetic heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号