首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856篇
  免费   94篇
  国内免费   145篇
  1095篇
  2024年   7篇
  2023年   22篇
  2022年   58篇
  2021年   75篇
  2020年   46篇
  2019年   54篇
  2018年   49篇
  2017年   43篇
  2016年   58篇
  2015年   49篇
  2014年   69篇
  2013年   57篇
  2012年   70篇
  2011年   70篇
  2010年   33篇
  2009年   31篇
  2008年   32篇
  2007年   38篇
  2006年   41篇
  2005年   40篇
  2004年   23篇
  2003年   24篇
  2002年   19篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1965年   1篇
排序方式: 共有1095条查询结果,搜索用时 15 毫秒
171.
The common house crow (Corvus splendens) is one of the best known and most wide spread species of the family Corvidae. It is a successful invasive species able to exploit urban environments, well removed from its natural distribution. It is considered a pest as it attains high population densities, can cause serious economic losses and has many adverse effects on native fauna and flora, including predation, competitive displacement and disease transmission. Little genetic research on the house crow has been undertaken so we have only a limited understanding of its natural genetic population structure and invasion history. In this study, we employ microsatellite and mitochondrial DNA markers to assess genetic diversity, phylogeography and population structure of C. splendens within its native range represented by Sri Lanka and Bangladesh and introduced range represented by Malaysia, Singapore, Kenya and South Africa. We found high levels of genetic diversity in some of the invasive populations for which multiple invasions are proposed. The lowest genetic diversity was found for the intentionally introduced population in Selangor, Malaysia. Sri Lanka is a possible source population for Malaysia Selangor consistent with a documented introduction over 100 years ago, with port cities within the introduced range revealing possible presence of migrants from other unsampled locations. We demonstrate the power of the approach of using multiple molecular markers to untangle patterns of invasion, provide insights into population structure and phylogeographic relationships and illustrate how historical processes may have contributed to making this species such a successful invader.  相似文献   
172.
Hirschsprung disease (HSCR) is an infrequent congenital intestinal dysplasia. The known genetic variations are unable to fully explain the pathogenesis of HSCR. The α/β-hydratase domain 1 (ABHD1) interferes with the proliferation and migration of intestinal stem cells. Docking protein 6 (DOK6) is involved in neurodevelopment through RET signalling pathway. We examined the association of ABHD1 and DOK6 genetic variants with HSCR using 1470 controls and 1473 HSCR patients from Southern Chinese children. The results clarified that DOK6 rs12968648 G allele significantly increased HSCR susceptibility, in the allelic model (p = 0.034; OR = 1.12, 95%CI = 1.01~1.24) and the dominant model (p = 0.038; OR = 1.12, 95%CI = 1.01~1.25). Clinical stratification analysis showed that rs12968648 G allele was associated with increased risk of short-segment HSCR (S-HSCR), in the allelic model (p = 0.028; OR = 1.14, 95%CI = 1.01~1.28) and the additive model (p = 0.030; OR = 1.14, 95%CI = 1.01~1.28). ABHD1 rs2304678 C allele had higher risk to develop total colonic aganglionosis (TCA) in the allelic model (p = 7.04E-03; OR = 1.67, 95%CI = 1.15~2.43) and the dominant model (p = 4.12E-03; OR = 1.93, 95%CI = 1.23~3.04). DOK6 rs12968648 and ABHD1 rs2304678 had significant intergenic synergistic effect according to logical regression (p = 0.0081; OR = 0.76, 95%CI = 0.63~0.93) and multifactor dimensionality reduction (MDR, p = 0.0045; OR = 1.25, 95%CI = 1.07~1.46). This study verified two susceptible variations of HSCR on ABHD1 and DOK6. Their roles in HSCR should be conducted in further studies.  相似文献   
173.
The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens.  相似文献   
174.
Tilletia laevis Kühn (syn. Tilletia foetida (Wallr.) Liro.) causes wheat common bunt, which is one of the most devastating plant diseases in the world. Common bunt can result in a reduction of 80% or even a total loss of wheat production. In this study, the characteristics of T. laevis infection in compatible wheat plants were defined based on the combination of scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. We found T. laevis could lead to the abnormal growth of wheat tissues and cells, such as leakage of chloroplasts, deformities, disordered arrangements of mesophyll cells and also thickening of the cell wall of mesophyll cells in leaf tissue. What’s more, T. laevis teliospores were found in the roots, stems, flag leaves, and glumes of infected wheat plants instead of just in the ovaries, as previously reported. The abnormal characteristics caused by T. laevis may be used for early detection of this pathogen instead of molecular markers in addition to providing theoretical insights into T. laevis and wheat interactions for breeding of common bunt resistance.  相似文献   
175.
176.
With microplate-immobilized polyclonal antibodies against a starting enzyme or its active mutant bearing consistent accessible epitopes, the maximum activity of an adsorbed enzyme/mutant (Vs) was predicted for comparison to recognize weakly-positive mutants. Rabbit antisera against Escherichia coli alkaline phosphatase (ECAP) were fractionated with 33% ammonium sulfate to yield crude polyclonal antibodies for conventional immobilization in 96-well microplates. The response curve of the activities of ECAP/mutant adsorbed by the immobilized polyclonal antibodies to protein quantities from a cell lysate was fit to an approximation model to predict Vs. With 0.4 μg crude polyclonal antibody for immobilization, Vs was consistent for ECAP in cell lysates bearing fourfold differences in its apparent specific activities when its abundance was greater than 0.9%. The ratio of Vs of the mutant R168K to that of ECAP was 1.5?±?0.1 (n?=?2), consistent with that of their specific activities after affinity purification. Unfortunately, the prediction of Vs with polyclonal antibodies that saturated microplate wells was ineffective to Pseudomonas aeruginosa arylsulfatase bearing less than 2% specific activity of ECAP. Therefore, with microplate-immobilized polyclonal antibodies to adsorb enzyme/mutants from cell lysates, high-throughput prediction of Vs was practical to recognize weakly-positive mutants of starting enzymes bearing fairly-high activities.  相似文献   
177.
178.
Engineering of hyaluronic acid (HA) biosynthetic pathway in recombinant Escherichia coli as production host is reported in this work. A hyaluronic acid synthase (HAS) gene, sphasA, from Sreptococcus pyogenes with the start codon gtg to atg mutant, was expressed in recombinant E. coli with or without the genes ugd, galF and glmU, which are analogs of hasB, hasC and hasD from Streptococcus, respectively, encoding UDP-glucose 6-dehygrogenase, Glucose-1-P uridyltransferase, and N-acetyl glucosamine uridyltransferase enzymes in the HA biosynthetic pathway. The single, double and triple organized artificial operons of sphasA, ugd, galF and glmU were designed and constructed using the inducible plasmid backbone of pMBAD. Only the triple expression recombinant, Top10/pMBAD-spABC, generated a relatively high titer of HA (approximately 48 mg/l at 48 h), indicating that both of the enzymes encoded by ugd and galF are essential for HA biosynthesis. A new gene of ssehasA with identical protein sequence of seHAS from Streptococcus equisimilis, was artificially synthesized after substituting all of the rare codons in the natural sehasA. The HA titer at 24 h flask culture increased to approximately 190 mg/l in sseAB and 160 mg/l in sseABC, respectively. Sorbitol could be used as another carbon source for HA accumulation, and the metabolic pathway for HA synthesis in a recombinant E. coli was presented. The concentration of Mg(2+) cofactor of HA synthase was optimized and a cell growth inhibition phenomenon was observed during HA accumulation. Molecular weight (MW) measurements revealed that the mean MW of HA produced from the recombinant E. coli under different conditions ranges from approximately 3.5x10(5) to 1.9x10(6)Da, indicating that the recombinant E. coli can be used as a potential host candidate for industrial production of HA.  相似文献   
179.
A comparative evaluation of five different cell-disruption methods for the release of recombinant hepatitis B core antigen (HBcAg) from Escherichia coli was investigated. The cell disruption techniques evaluated in this study were high-pressure homogenization, batch-mode bead milling, continuous-recycling bead milling, ultrasonication, and enzymatic lysis. Continuous-recycling bead milling was found to be the most effective method in terms of operating cost and time. However, the highest degree of cell disruption and amounts of HBcAg were obtained from the high-pressure homogenization process. The direct purification of HBcAg from the unclarified cell disruptate derived from high-pressure homogenization and bead milling techniques, using batch anion-exchange adsorption methods, showed that the conditions of cell disruption have a substantial effect on subsequent protein recovery steps.  相似文献   
180.
Neuraminidase 1 is a negative regulator of lysosomal exocytosis   总被引:1,自引:0,他引:1  
Lysosomal exocytosis is a Ca2+-regulated mechanism that involves proteins responsible for cytoskeletal attachment and fusion of lysosomes with the plasma membrane. However, whether luminal lysosomal enzymes contribute to this process remains unknown. Here we show that neuraminidase NEU1 negatively regulates lysosomal exocytosis in hematopoietic cells by processing the sialic acids on the lysosomal membrane protein LAMP-1. In macrophages from NEU1-deficient mice, a model of the disease sialidosis, and in patients' fibroblasts, oversialylated LAMP-1 enhances lysosomal exocytosis. Silencing of LAMP-1 reverts this phenotype by interfering with the docking of lysosomes at the plasma membrane. In neu1-/- mice the excessive exocytosis of serine proteases in the bone niche leads to inactivation of extracellular serpins, premature degradation of VCAM-1, and loss of bone marrow retention. Our findings uncover an unexpected mechanism influencing lysosomal exocytosis and argue that exacerbations of this process form the basis for certain genetic diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号