首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   95篇
  国内免费   144篇
  2024年   5篇
  2023年   20篇
  2022年   57篇
  2021年   75篇
  2020年   46篇
  2019年   54篇
  2018年   49篇
  2017年   43篇
  2016年   58篇
  2015年   49篇
  2014年   69篇
  2013年   57篇
  2012年   70篇
  2011年   70篇
  2010年   33篇
  2009年   31篇
  2008年   32篇
  2007年   38篇
  2006年   41篇
  2005年   40篇
  2004年   23篇
  2003年   24篇
  2002年   19篇
  2001年   8篇
  2000年   4篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   11篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1965年   1篇
排序方式: 共有1090条查询结果,搜索用时 109 毫秒
101.
2,4-Diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens catalyzes hydrolytic carbon-carbon (C–C) bond cleavage of the antibiotic 2,4-diacetylphloroglucinol to form monoacetylphloroglucinol, a rare class of reactions in chemistry and biochemistry. To investigate the catalytic mechanism of this enzyme, we determined the three-dimensional structure of PhlG at 2.0 Å resolution using x-ray crystallography and MAD methods. The overall structure includes a small N-terminal domain mainly involved in dimerization and a C-terminal domain of Bet v1-like fold, which distinguishes PhlG from the classical α/β-fold hydrolases. A dumbbell-shaped substrate access tunnel was identified to connect a narrow interior amphiphilic pocket to the exterior solvent. The tunnel is likely to undergo a significant conformational change upon substrate binding to the active site. Structural analysis coupled with computational docking studies, site-directed mutagenesis, and enzyme activity analysis revealed that cleavage of the 2,4-diacetylphloroglucinol C–C bond proceeds via nucleophilic attack by a water molecule, which is coordinated by a zinc ion. In addition, residues Tyr121, Tyr229, and Asn132, which are predicted to be hydrogen-bonded to the hydroxyl groups and unhydrolyzed acetyl group, can finely tune and position the bound substrate in a reactive orientation. Taken together, these results revealed the active sites and zinc-dependent hydrolytic mechanism of PhlG and explained its substrate specificity as well.  相似文献   
102.
To understand the composition and structure of nitrogen-fixing bacterial communities from the Sanjiangyuan Nature Reserve on the Tibetan Plateau, the molecular diversity of nifH genes from soil obtained at six sites was examined using a PCR-based cloning approach. Six samples were collected from different regions at an altitude of 3907-4824 m above sea level, and a principal component analysis (PCA) showed that they had different biogeochemical properties. A total of 446 clones and 162 unique RFLP patterns were found. PCA of the RFLP patterns and their biogeochemical parameters showed that the content of soil organic carbon (C), total nitrogen (N) and altitude were the most important factors affecting the nitrogen-fixing bacteria community. Fifty-nine nifH clones were sequenced and their nucleotide identity varied from 64% to 98%, subdivisible into four groups in our phylogenetic tree. Some of the clone sequences were related to nifH genes belonging to four phylogenetic subdivisions (alpha, beta, gamma and delta subclasses of the Proteobacteria), while most of the clones were closely related to the genes of the uncultured bacteria. The tree also showed that the sequence distributions were not clearly related to the sample sites.  相似文献   
103.
Directed evolution of enzymes and biosynthetic pathways   总被引:4,自引:0,他引:4  
Directed evolution is an important tool for overcoming the limitations of natural enzymes as biocatalysts. Recent advances have focused on applying directed evolution to a variety of enzymes, such as epoxide hydrolase, glyphosate N-acetyltransferase, xylanase and phosphotriesterase, in order to improve their activity, selectivity, stability and solubility. The focus has also shifted to manipulating biosynthetic pathways for the production of many naturally synthesized compounds, as well as the production of novel 'unnatural' compounds. A combined directed evolution and computational design approach is becoming increasingly important in exploring enzyme sequence-space and creating improved or novel enzymes. Fueled by recent breakthroughs in genomics and metagenomics, these developments should help expand the use of biocatalysts in industry.  相似文献   
104.
The study of the chemical constituents of the roots of Newbouldia laevis (Bignoniaceae) has resulted in the isolation and characterization of a naphthoquinone-anthraquinone coupled pigment named newbouldiaquinone A (1) together with 14 known compounds: apigenin, chrysoeriol, newbouldiaquinone, lapachol, 2-methylanthraquinone, 2-acetylfuro-1,4-naphthoquinone, 2,3-dimethoxy-1,4-benzoquinone, oleanolic acid, canthic acid, 2-(4-hydroxyphenyl)ethyl triacontanoate, newbouldiamide, 5,7-dihydroxydehydroiso-alpha-lapachone, beta-sitosterol, and beta-sitosterol glucopyranoside. The structure elucidation of the isolated compounds was established based on spectroscopic studies, notably of the 2D NMR spectra. The antimalarial activity of compound (1) against Plasmodium falciparum in vitro shows moderate chemo suppression of parasitic growth. Its antimicrobial activity against a wide range of microorganisms was 13- and 24-fold more active against Candida gabrata and Enterobacter aerogens than the reference antibiotics nystatin and gentamycin.  相似文献   
105.
Xu H  Xia B  Jin C 《Journal of bacteriology》2006,188(4):1509-1517
The low-molecular-weight (LMW) protein tyrosine phosphatases (PTPs) exist ubiquitously in prokaryotes and eukaryotes and play important roles in cellular processes. We report here the solution structure of YwlE, an LMW PTP identified from the gram-positive bacteria Bacillus subtilis. YwlE consists of a twisted central four-stranded parallel beta-sheet with seven alpha-helices packing on both sides. Similar to LMW PTPs from other organisms, the conformation of the YwlE active site is favorable for phosphotyrosine binding, indicating that it may share a common catalytic mechanism in the hydrolysis of phosphate on tyrosine residue in proteins. Though the overall structure resembles that of the eukaryotic LMW PTPs, significant differences were observed around the active site. Residue Asp115 is likely interacting with residue Arg13 through electrostatic interaction or hydrogen bond interaction to stabilize the conformation of the active cavity, which may be a unique character of bacterial LMW PTPs. Residues in the loop region from Phe40 to Thr48 forming a wall of the active cavity are more flexible than those in other regions. Ala41 and Gly45 are located near the active cavity and form a noncharged surface around it. These unique properties demonstrate that this loop may be involved in interaction with specific substrates. In addition, the results from spin relaxation experiments elucidate further insights into the mobility of the active site. The solution structure in combination with the backbone dynamics provides insights into the mechanism of substrate specificity of bacterial LMW PTPs.  相似文献   
106.
Ke H  Zhang S  Li J  Howlett GJ  Wang CC 《Biochemistry》2006,45(50):15100-15110
The homodimeric protein DsbC is a disulfide isomerase and a chaperone located in the periplasm of Escherichia coli. We have studied the guanidine hydrochloride (GdnHCl)-induced unfolding and refolding of DsbC using mutagenesis, intrinsic fluorescence, circular dichroism spectra, size-exclusion chromatography, and sedimentation velocity analysis. The equilibrium refolding and unfolding of DsbC was thermodynamically reversible. The equilibrium folding profile measured by fluorescence excited at 280 nm exhibited a three-state transition profile with a stable folding intermediate formed at 0-2.0 M GdnHCl followed by a second transition at higher GdnHCl concentrations. Sedimentation velocity data revealed dissociation of the dimer to the monomer over the concentration range of the first transition (0-2.0 M). In contrast, fluorescence emission data for DsbC excited at 295 nm showed a single two-state transition. Fluorescence emission data for the equilibrium unfolding of the monomeric G49R mutant, excited at either 295 or 280 nm, indicated a single two-state transition. Data obtained for the dimeric Y52W mutant indicated a strong protein concentration dependence of the first transition but no dependence of the second transition in equilibrium unfolding. This suggests that the fluorescence of Y52W sensitively reports conformational changes caused by dissociation of the dimer. Thus, the folding of DsbC follows a three-state transition model with a monomeric folding intermediate formed in 0-2.0 M GdnHCl. The folding of DsbC in the presence of DTT indicates an important role for the non-active site disulfide bond in stabilizing the conformation of the molecule. Dimerization ensures the performance of chaperone and isomerase functions of DsbC.  相似文献   
107.
108.
Zhang Z  Luo X  Ding S  Chen J  Chen T  Chen X  Zha H  Yao L  He X  Peng H 《FEBS letters》2012,586(1):20-26
Diabetic nephropathy (DN) is a major diabetic complication. However, the initiating molecular events triggering DN are unknown. In this study we focused on microRNA-451 (miR-451), which is downregulated during early DN. We found that miR-451 negatively regulated the expression of Ywhaz through Ywhaz 3'UTR and that Ywhaz was required for the miR-451-mediated downregulation of p38 MAPK signalling. Moreover, over-expression of miR-451 inhibits glomerular mesangial cell proliferation in vitro and in vivo. These findings suggest that the growth-inhibitory effect of miR-451 may be explained in part by miR-451-induced suppression of Ywhaz and p38 MAPK signalling, providing evidence for the potential role of miR-451 in early DN.  相似文献   
109.
Yang L  Ding Y  Chen Y  Zhang S  Huo C  Wang Y  Yu J  Zhang P  Na H  Zhang H  Ma Y  Liu P 《Journal of lipid research》2012,53(7):1245-1253
Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle.  相似文献   
110.
White tail disease (WTD) is a serious viral disease in the hatcheries and nursery ponds of Macrobrachium rosenbergii in many parts of the world. A new disease similar to WTD was observed in larvae and post larvae of M. rosenbergii cultured in Malaysia. In the present study, RT-PCR assay was used to detect the causative agents of WTD, M. rosenbergii nodavirus (MrNV) and extra small virus (XSV) using specific primers for MrNV RNA2 and XSV. The results showed the presence of MrNV in the samples with or without signs of WTD. However, XSV was only detected in some of the MrNV-positive samples. Phylogenetic analysis showed that the RNA2 of our Malaysian isolates were significantly different from the other isolates. Histopathological studies revealed myofiber degeneration of the tail muscles and liquefactive myopathy in the infected prawns. This was the first report on the occurrence of MrNV in the Malaysian freshwater prawn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号