首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   17篇
  国内免费   54篇
  2024年   3篇
  2023年   13篇
  2022年   17篇
  2021年   41篇
  2020年   24篇
  2019年   16篇
  2018年   29篇
  2017年   11篇
  2016年   20篇
  2015年   36篇
  2014年   30篇
  2013年   33篇
  2012年   48篇
  2011年   31篇
  2010年   16篇
  2009年   5篇
  2008年   13篇
  2007年   6篇
  2006年   6篇
  2004年   2篇
  1999年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有404条查询结果,搜索用时 31 毫秒
11.
Congenital hereditary cataract, which is mainly caused by the deposition of crystallins in light-scattering particles, is one of the leading causes of newborn blindness in human beings. Recently, an autosomal dominant congenital cataract-microcornea syndrome in a Chinese family has been associated with the S129R mutation in βB1-crystallin. To investigate the underlying molecular mechanism, we examined the effect of the mutation on βB1-crystallin structure and thermal stability. Biophysical experiments indicated that the mutation impaired the oligomerization of βB1-crystallin and shifted the dimer–monomer equilibrium to monomer. Molecular dynamic simulations revealed that the mutation altered the hydrogen-bonding network and hydrophobic interactions in the subunit interface of the dimeric protein, which resulted in the opening of the tightly associated interacting sites to allow the infiltration of the solvent molecules into the interface. Despite the disruption of βB1-crystallin assembly, the thermal stability of βB1-crystallin was increased by the mutation accompanied by the reduction of thermal aggregation at high temperatures. Further analysis indicated that the mutation significantly increased the sensitivity of βB1-crystallin to trypsin hydrolysis. The digested fragments of the mutant were prone to aggregate and unable to protect βA3-crystallin against aggregation. These results indicated that the thermal stability-beneficial mutation S129R in βB1-crystallin provided an excellent model for discovering molecular mechanisms apart from solubility and stability. Our results also highlighted that the increased sensitivity of mutated crystallins towards proteases might play a crucial role in the pathogenesis of congenital hereditary cataract and associated syndrome.  相似文献   
12.
Although the 30K family proteins are important anti-apoptotic molecules in silkworm hemolymph, the underlying mechanism remains to be investigated. This is especially the case in human vascular endothelial cells (HUVECs). In this study, a 30K protein, 30Kc6, was successfully expressed and purified using the Bac-to-Bac baculovirus expression system in silkworm cells. Furthermore, the 30Kc6 expressed in Escherichia coli was used to generate a polyclonal antibody. Western blot analysis revealed that the antibody could react specifically with the purified 30Kc6 expressed in silkworm cells. The In vitro cell apoptosis model of HUVEC that was induced by oxidized low density lipoprotein (Ox-LDL) and in vivo atherosclerosis rabbit model were constructed and were employed to analyze the protective effects of the silkworm protein 30Kc6 on these models. The results demonstrated that the silkworm protein 30Kc6 significantly enhanced the cell viability in HUVEC cells treated with Ox-LDL, decreased the degree of DNA fragmentation and markedly reduced the level of 8-isoprostane. This could be indicative of the silkworm protein 30Kc6 antagonizing the Ox-LDL-induced cell apoptosis by inhibiting the intracellular reactive oxygen species (ROS) generation. Furthermore, Ox-LDL activated the cell mitogen activated protein kinases (MAPK), especially JNK and p38. As demonstrated with Western analysis, 30Kc6 inhibited Ox-LDL-induced cell apoptosis in HUVEC cells by preventing the MAPK signaling pathways. In vivo data have demonstrated that oral feeding of the silkworm protein 30Kc6 dramatically improved the conditions of the atherosclerotic rabbits by decreasing serum levels of total triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Furthermore, 30Kc6 alleviated the extent of lesions in aorta and liver in the atherosclerotic rabbits. These data are not only helpful in understanding the anti-apoptotic mechanism of the 30K family proteins, but also provide important information on prevention and treatment of human cardiovascular diseases.  相似文献   
13.
14.
15.
The 12.6-kDa FK506-binding protein (FKBP12.6) is considered to be a key regulator of the cardiac ryanodine receptor (RyR2), but its precise role in RyR2 function is complex and controversial. In the present study we investigated the impact of FKBP12.6 removal on the properties of the RyR2 channel and the propensity for spontaneous Ca(2+) release and the occurrence of ventricular arrhythmias. Single channel recordings in lipid bilayers showed that FK506 treatment of recombinant RyR2 co-expressed with or without FKBP12.6 or native canine RyR2 did not induce long-lived subconductance states. [(3)H]Ryanodine binding studies revealed that coexpression with or without FKBP12.6 or treatment with or without FK506 did not alter the sensitivity of RyR2 to activation by Ca(2+) or caffeine. Furthermore, single cell Ca(2+) imaging analyses demonstrated that HEK293 cells co-expressing RyR2 and FKBP12.6 or expressing RyR2 alone displayed the same propensity for spontaneous Ca(2+) release or store overload-induced Ca(2+) release (SOICR). FK506 increased the amplitude and decreased the frequency of SOICR in HEK293 cells expressing RyR2 with or without FKBP12.6, indicating that the action of FK506 on SOICR is independent of FKBP12.6. As with recombinant RyR2, the conductance and ligand-gating properties of single RyR2 channels from FKBP12.6-null mice were indistinguishable from those of single wild type channels. Moreover, FKBP12.6-null mice did not exhibit enhanced susceptibility to stress-induced ventricular arrhythmias, in contrast to previous reports. Collectively, our results demonstrate that the loss of FKBP12.6 has no significant effect on the conduction and activation of RyR2 or the propensity for spontaneous Ca(2+) release and stress-induced ventricular arrhythmias.  相似文献   
16.
17.
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.  相似文献   
18.
Kazakh sheep are seasonal estrous animals, and gonadotropin-releasing hormone (GnRH) is the key to fertility regulation. The nutritional level has a certain regulatory effect on estrous, and vitamin B folate plays a role in DNA methylation, directly participating in the process. The goal of this study was to determine whether folate is involved in GnAQ methylation and its effect on GnRH secretion. The hypothalamic neurons of Kazakh fetal sheep were treated with folate at concentrations of 0 mg/mL, 4 mg/mL, 40 mg/mL, and 80 mg/mL. GnAQ promoter methylation, DNMT1, GnAQ expression, and GnRH secretion following treatment with different concentrations of folate were analyzed. One CpG site was methylated in the GNAQ promoter with 40 mg/mL folic acid, and no CpG methylation was found in the other groups. GnAQ expression was related to folate concentration and showed a trend of increasing first and then decreasing. The GnRH expression level in the 40 mg/mL folate group was significantly higher than in the other three groups ( P < .05). These results demonstrate that the appropriate folate concentration promoted GANQ promoter methylation, which in turn affected GnRH secretion.  相似文献   
19.
20.
为揭示丛枝菌根真菌(AMF)和根瘤菌在白三叶氮(N)同化中的作用,该研究对白三叶进行单一或联合接种隐类球囊霉(Paraglomus occultum)和三叶草根瘤菌(Rhizobium trifolii),分析其对白三叶的生长、光合作用、叶片N和氨基酸含量以及N同化相关酶活性的影响。结果表明:(1)单一接种AMF或根瘤菌以及联合接种AMF和根瘤菌均显著增加了白三叶的株高、匍匐茎长度、叶片数、地上部生物量、总生物量、叶绿素b和总叶绿素含量、稳态光量子效率和叶片N含量,这种增强效应是联合接种>单一AMF>单一根瘤菌>未接种处理。(2)联合接种AMF和根瘤菌显著增加了白三叶叶片中丙氨酸、精氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸和组氨酸的含量,显著提升了叶片N同化相关酶如硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶、谷氨酸脱氢酶、天冬酰胺合成酶和天冬氨酸转氨酶的活性,显著促进AMF对白三叶根系的侵染。综上认为,联合接种AMF和根瘤菌通过激活N同化相关酶活性有效促进N同化,产生更多氨基酸,进一步促进白三叶植株生长; 联合接种AMF和根瘤菌具有协同作用,有效促进了白三叶的N同化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号