首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5542篇
  免费   625篇
  国内免费   652篇
  6819篇
  2024年   18篇
  2023年   58篇
  2022年   155篇
  2021年   275篇
  2020年   233篇
  2019年   275篇
  2018年   253篇
  2017年   200篇
  2016年   257篇
  2015年   353篇
  2014年   388篇
  2013年   423篇
  2012年   525篇
  2011年   465篇
  2010年   319篇
  2009年   285篇
  2008年   286篇
  2007年   304篇
  2006年   250篇
  2005年   220篇
  2004年   202篇
  2003年   224篇
  2002年   157篇
  2001年   131篇
  2000年   94篇
  1999年   80篇
  1998年   86篇
  1997年   42篇
  1996年   39篇
  1995年   19篇
  1994年   16篇
  1993年   18篇
  1992年   30篇
  1991年   18篇
  1990年   30篇
  1989年   23篇
  1988年   9篇
  1987年   9篇
  1986年   4篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1973年   2篇
  1972年   5篇
  1958年   2篇
排序方式: 共有6819条查询结果,搜索用时 15 毫秒
991.
The phytohormones gibberellic acid (GA) and abscisic acid (ABA) antagonistically control seed germination. High levels of GA favor seed germination, whereas high levels of ABA hinder this process. The direct relationship between GA biosynthesis and seed germination ability need further investigation. Here, we identified the ABA‐insensitive gain‐of‐function mutant germination insensitive to ABA mutant 2 (gim2) by screening a population of XVE T‐DNA‐tagged mutant lines. Based on two loss‐of‐function gim2‐ko mutant lines, the disruption of GIM2 function caused a delay in seed germination. By contrast, upregulation of GIM2 accelerated seed germination, as observed in transgenic lines overexpressing GIM2 (OE). We detected a reduction in endogenous bioactive GA levels and an increase in endogenous ABA levels in the gim2‐ko mutants compared to wild type. Conversely, the OE lines had increased endogenous bioactive GA levels and decreased endogenous ABA levels. The expression levels of a set of GA‐ and/or ABA‐related genes were altered in both the gim2‐ko mutants and the OE lines. We confirmed that GIM2 has dioxygenase activity using an in vitro enzyme assay, observing that GIM2 can oxidize GA12. Hence, our characterization of GIM2 demonstrates that it plays a role in seed germination by affecting the GA metabolic pathway in Arabidopsis.  相似文献   
992.
Great efforts toward developing novel and efficient hole‐transporting materials are needed to further improve the device efficiency and enhance the cell stability of perovskite solar cells (PSCs). The poor film conductivity and the low carrier mobility of organic small‐molecule‐based hole‐transporting materials restrict their application in PSCs. This study develops an efficient and stable hole‐transporting material, tetrafluorotetracyanoquinodimethane (F4‐TCNQ)‐doped copper phthalocyanine‐3,4′,4′′,4′′′‐tetra‐sulfonated acid tetra sodium salt (TS‐CuPc) via a solution process, in planar structure PSCs. The p‐type‐doped TS‐CuPc film demonstrates improved film conductivity and hole mobility owing to the strong electron affinity of F4‐TCNQ. By the F4‐TCNQ tailoring, the composite film gives the highest occupied molecular orbital level as high as 5.3 eV, which is beneficial for hole extraction. In addition, the aqueous solution processed TS‐CuPc:F4‐TCNQ precursor is almost neutral with good stability for avoiding the electrode erosion. As a result, the fabricated PSCs employing TS‐CuPc:F4‐TCNQ as the hole‐transporting material exhibit a power conversion efficiency of 16.14% in a p–i–n structure and 20.16% in an n–i–p structure, respectively. The developed organic small molecule of TS‐CuPc provides the diversification of hole‐transporting materials in planar PSCs.  相似文献   
993.
Compact, light, and powerful energy storage devices are urgently needed for many emerging applications; however, the development of advanced power sources relies heavily on advances in materials innovation. Here, the findings in rational design, one‐pot synthesis, and characterization of a series of Ni hydroxide‐based electrode materials in alkaline media for fast energy storage are reported. Under the guidance of density functional theory calculations and experimental investigations, a composite electrode composed of Co‐/Mn‐substituted Ni hydroxides grown on reduced graphene oxide (rGO) is designed and prepared, demonstrating capacities of 665 and 427 C g?1 at current densities of 2 and 20 A g?1, respectively. The superior performance is attributed mainly to the low deprotonation energy and the facile electron transport, as elaborated by theoretical calculations. When coupled with an electrode based on organic molecular‐modified rGO, the resulting hybrid device demonstrates an energy density of 74.7 W h kg?1 at a power density of 1.68 kW kg?1 while maintaining capacity retention of 91% after 10,000 cycles (20 A g?1). The findings not only provide a promising electrode material for high‐performance hybrid capacitors but also open a new avenue toward knowledge‐based design of efficient electrode materials for other energy storage applications.  相似文献   
994.
A unique 3D hybrid sponge with chemically coupled nickel disulfide‐reduced graphene oxide (NiS2‐RGO) framework is rationally developed as an effective polysulfide reservoir through a biomolecule‐assisted self‐assembly synthesis. An optimized amount of NiS2 (≈18 wt%) with porous nanoflower‐like morphology is uniformly in situ grown on the RGO substrate, providing abundant active sites to adsorb and localize polysulfides. The improved polysulfide adsorptivity from sulfiphilic NiS2 is confirmed by experimental data and first‐principle calculations. Moreover, due to the chemical coupling between NiS2 and RGO formed during the in situ synthesis, the conductive RGO substrate offers a 3D electron pathway to facilitate charge transfer toward the NiS2‐polysulfide adsorption interface, triggering a fast redox kinetics of polysulfide conversion and excellent rate performance (C/20–4C). Therefore, the self‐assembled hybrid structure simultaneously promotes static polysulfide‐trapping capability and dynamic polysulfide‐conversion reversibility. As a result, the 3D porous sponge enables a high sulfur content (75 wt%) and a remarkably high sulfur loading (up to 21 mg cm?2) and areal capacity (up to 16 mAh cm?2), exceeding most of the reported values in the literature involving either RGO or metal sulfides/other metal compounds (sulfur content of <60 wt% and sulfur loading of <3 mg cm?2).  相似文献   
995.
With the rapidly growing demand for low‐cost and safe energy storage, the advanced battery concepts have triggered strong interests beyond the state‐of‐the‐art Li‐ion batteries (LIBs). Herein, a novel hybrid Li/Na‐ion full battery (HLNIB) composed of the high‐energy and lithium‐free Na3V2(PO4)2O2F (NVPOF) cathode and commercial graphite anode mesophase carbon micro beads is for the first time designed. The assembled HLNIBs exhibit two high working voltage at about 4.05 and 3.69 V with a specific capacity of 112.7 mA h g?1. Its energy density can reach up to 328 W h kg?1 calculated from the total mass of both cathode and anode materials. Moreover, the HLNIBs show outstanding high‐rate capability, long‐term cycle life, and excellent low‐temperature performance. In addition, the reaction kinetics and Li/Na‐insertion/extraction mechanism into/out NVPOF is preliminarily investigated by the galvanostatic intermittent titration technique and ex situ X‐ray diffraction. This work provides a new and profound direction to develop advanced hybrid batteries.  相似文献   
996.
Hard carbon has long been considered the leading candidate for anode materials of Na‐ion batteries. Intensive research efforts have been carried out in the search of suitable carbon structure for an improved storage capability. Herein, an anode based on multishelled hollow carbon nanospheres, which are able to deliver an outstanding electrochemical performance with an extraordinary reversible capacity of 360 mAh g?1 at 30 mA g?1, is designed. An interesting dependence of the electrochemical properties on the multishelled structural features is identified: with an increase in the shell number of the model carbon materials, the sloping capacity in the charge/discharge curve remains almost unchanged while the plateau capacity continuously increases, suggesting an adsorption‐filling Na‐storage mechanism for the multishelled hollow hard carbon materials. The findings not only provide new perspective in the structural design of high‐performance anode materials, but also shed light on the complicated mechanism behind Na‐storage by hard carbon.  相似文献   
997.
The development of standards for the field of regenerative medicine has been noted as a high priority by several road-mapping activities. Additionally, the U.S. Congress recognizes the importance of standards in the 21st Century Cure Act. Standards will help to accelerate and streamline cell and gene therapy product development, ensure the quality and consistency of processes and products, and facilitate their regulatory approval. Although there is general agreement for the need of additional standards for regenerative medicine products, a shared understanding of standards is required for real progress toward the development of standards to advance regenerative medicine. Here, we describe the roles of standards in regenerative medicine as well as the process for standards development and the interactions of different entities in the standards development process. Highlighted are recent coordinated efforts between the U.S. Food and Drug Administration and the National Institute of Standards and Technology to facilitate standards development and foster science that underpins standards development.  相似文献   
998.
The emergence of cell-based therapeutics has increased the need for high-quality, robust and validated measurements for cell characterization. Cell count, being one of the most fundamental measures for cell-based therapeutics, now requires increased levels of measurement confidence. The National Institute of Standards and Technology (NIST) and the US Food and Drug Administration (FDA) jointly hosted a workshop focused on cell counting in April 2017 entitled “NIST-FDA Cell Counting Workshop: Sharing Practices in Cell Counting Measurements.” The focus of the workshop was on approaches for selecting, designing and validating cell counting methods and overcoming gaps in obtaining sufficient measurement assurance for cell counting. Key workshop discussion points, representing approximately 50 subject matter experts from industry, academia and government agencies, are summarized here. A key conclusion is the need to design the most appropriate cell counting method, including control/measurement assurance strategies, for a specific counting purposes. There remains a need for documentary standards for streamlining the process to develop, qualify and validate cell counting measurements as well as community-driven efforts to develop new or improved biological and non-biological reference materials.  相似文献   
999.
The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson’s correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.  相似文献   
1000.
The process of initiation of host invasion and survival of some foliar phytopathogenic fungi in the absence of external nutrients on host leaf surfaces remains obscure. Here, we demonstrate that gluconeogenesis plays an important role in the process and nutrient‐starvation adaptation before the pathogen host invasion. Deletion of phosphoenolpyruvate c arboxyk inase gene BcPCK1 in gluconeogenesis in Botrytis cinerea, the causative agent of grey mould, resulted in the failure of the ΔBcpck1 mutant conidia to germinate on hard and hydrophobic surface and penetrate host cells in the absence of glucose, reduction in conidiation and slow conidium germination in a nutrient‐rich medium. The wild‐type and ΔBcpck1 conidia germinate similarly in the presence of glucose (higher concentration) as the sole carbon source. Conidial glucose‐content should reach a threshold level to initiate germination and host penetration. Infection structure formation by the mutants displayed a glucose‐dependent fashion, which corresponded to the mutant virulence reduction. Exogenous glucose or complementation of BcPCK1 completely rescued all the developmental and virulence defects of the mutants. Our findings demonstrate that BcPCK1 plays a crucial role in B. cinerea pathogenic growth and virulence, and provide new insights into gluconeogenesis mediating pathogenesis of plant fungal pathogens via initiation of conidial germination and host penetration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号