首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   641篇
  免费   51篇
  国内免费   40篇
  2023年   12篇
  2022年   18篇
  2021年   40篇
  2020年   20篇
  2019年   14篇
  2018年   24篇
  2017年   27篇
  2016年   28篇
  2015年   30篇
  2014年   44篇
  2013年   42篇
  2012年   48篇
  2011年   58篇
  2010年   37篇
  2009年   24篇
  2008年   30篇
  2007年   32篇
  2006年   25篇
  2005年   26篇
  2004年   14篇
  2003年   15篇
  2002年   30篇
  2001年   8篇
  2000年   16篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有732条查询结果,搜索用时 812 毫秒
11.
Gao  Yuqiu  Yuan  Ye  Li  Qingkang  Kou  Liang  Fu  Xiaoli  Dai  Xiaoqin  Wang  Huimin 《Plant and Soil》2021,460(1-2):229-246
Plant and Soil - Multi-elemental stoichiometry can represent the biogeochemical niches of species, which can further guide community assemblage. Mycorrhizae play a key role in plant elemental...  相似文献   
12.
【目的】本研究旨在对双委夜蛾Athetis dissimilis气味结合蛋白OBP6进行原核表达、抗体制备以及表达谱分析,便于今后对AdisOBP6功能展开研究。【方法】利用生物信息学软件分析AdisOBP6蛋白结构特征;利用通过原核表达获得的重组蛋白4次免疫新西兰大白兔,制备AdisOBP6抗体;采用荧光定量PCR和Western blot技术检测AdisOBP6在双委夜蛾雌雄成虫触角、不同时期精巢以及受精卵和未受精卵中的表达情况。【结果】同源建模预测显示,AdisOBP6具有6个保守半胱氨酸残基和7个α-螺旋结构,并 折叠成一个结合口袋。原核表达结果显示,在20℃下0.5 mmol/L IPTG诱导重组蛋白表达量最多、最稳定。4次免疫重复中,抗体效价分别超过1∶512 000, 1∶512 000, 1∶512 000和1∶64 000。Westernblot检测获得的抗体与AdisOBP6蛋白能够特异性结合。荧光定量PCR结果显示,AdisOBP6在双委夜蛾精巢中的表达量远高于在触角中的,在幼虫期精巢中AdisOBP6就已经开始表达,在蛹期精巢中表达量低于在幼虫期的, 成虫羽化后精巢中的表达量逐渐进入高峰,在未受精卵和受精卵中几乎不表达或表达量极低。Western blot分析发现,AdisOBP6蛋白也主要在精巢中表达,在雌雄成虫触角、受精卵和未受精卵中表达量很低。【结论】本研究实现了AdisOBP6的原核表达,成功地制备了抗体;并证实AdisOBP6在双委夜蛾精巢中大量表达,成虫羽化后表达量达到高峰,推测AdisOBP6可能参与了授精过程。本研究结果为今后进一步研究AdisOBP6的功能奠定了基础。  相似文献   
13.
Xie  Fuquan  Pei  Shengxiang  Huang  Xiaoyun  Wang  Lina  Kou  Jinyan  Zhang  Gaiyun 《Antonie van Leeuwenhoek》2021,114(12):2133-2145

A novel Gram-staining positive, aerobic, rod-shaped, non-motile and yellow-pigmented actinobacterium, designated strain WY83T, was isolated from a marine sediment of Indian Ocean. Strain WY83T grew optimally at 30–35 °C, pH 7–8 and with 0–3% (w/v) NaCl. The predominant menaquinones were MK-10, MK-11 and MK-12, and the major fatty acids were C19:1 ω9c/C19:1 ω11c, anteiso-C15:0, C17:0 3OH, and iso-C16:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The cell-wall peptidoglycan contained lysine as a diamino acid. The DNA G?+?C content was 72.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and ninety-two bacterial core genes indicated that strain WY83T formed an evolutionary lineage with Chryseoglobus frigidaquae JCM 14730T, Chryseoglobus indicus CTD02-10-2T, Yonghaparkia alkaliphila JCM 15138T, Microcella alkaliphila DSM 18851T and Microcella putealis DSM 19627T within the radiation enclosing members of the family Microbacteriaceae. All pairwise percentage of conserved proteins between strain WY83T and the closely related phylogenetic neighbors were greater than 65%. The average nucleotide identity and in silico DNA–DNA hybridization values were both below the thresholds used for the delineation of a new species. On the basis of the evidence presented, strains WY83T, Y. alkaliphila JCM 15138T, C. frigidaquae JCM 14730T, M. alkaliphila DSM 18851T and M. putealis DSM 19627T should belong to different species of the same genus. Strain WY83T represents a novel species of the genus Microcella, for which the name Microcella flavibacter sp. nov. is proposed. The type strain is WY83T (=?KCTC 39637T?=?MCCC 1A07099T). Furthermore, Chryseoglobus frigidaquae, Chryseoglobus indicus, and Yonghaparkia alkaliphila were reclassified as Microcella frigidaquae comb. nov., Microcella indica nom. nov., and Microcella alkalica nom. nov., respectively.

  相似文献   
14.
Although the unique organization of vertebrate cone mosaics was first described long ago,both their underlying molecular basis and physiological significance are largely unknown.Here,we demonstrate that Crumbs proteins,the key regulators of epithelial apical polarity,establish the planar cellular polarity of photoreceptors in zebrafish.Via heterophilic Crb2a-Crb2b interactions,the apicobasal polarity protein Crb2b restricts the asymmetric planar distribution of Crb2a in photoreceptors.The planar polarized Crumbs proteins thus balance intercellular adhesions and tension between photoreceptors,thereby stabilizing the geometric organization of cone mosaics.Notably,loss of Crb2b in zebrafish induces a nearsightedness-like phenotype in zebrafish accompanied by an elongated eye axis and impairs zebrafish visual perception for predation.These data reveal a detailed mechanism for cone mosaic homeostasis via previously undiscovered apical-planar polarity coordination and propose a pathogenic mechanism for nearsightedness.  相似文献   
15.
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems‐level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage‐dependent manner, with switch‐like changes accompanying anterior–posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra‐tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left–right symmetric pattern are predetermined to be analogous in early progenitors so as to pre‐set equivalent states. Finally, genome‐wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co‐regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single‐cell level.  相似文献   
16.
Biomechanics and Modeling in Mechanobiology - Fluoroscopy is a radiographic procedure for evaluating esophageal disorders such as achalasia, dysphasia and gastroesophageal reflux disease. It...  相似文献   
17.
Ferritin is a conserved iron-binding protein involved in cellular iron metabolism and host defense. In the present study, two distinct cDNAs for ferritins in the freshwater pearl mussel Hyriopsis schlegelii were identified (designated as HsFer-1 and HsFer-2) by SMART RACE approach and expressed sequence tag (EST) analysis. The full-length cDNAs of HsFer-1 and HsFer-2 were of 760 and 877 bp, respectively. Both of the two cDNAs contained an open reading frame (ORF) of 522 bp encoding for 174 amino acid residues. Sequence characterization and homology alignment indicated that HsFer-1 and HsFer-2 had higher similarity to H-type subunit of vertebrate ferritins than L-type subunit. Analysis of the HsFer-1 and HsFer-2 untranslated regions (UTR) showed that both of them had an iron response element (IRE) in the 5′-UTR, which was considered to be the binding site for iron regulatory protein (IRP). Quantitative real-time PCR (qPCR) assays were employed to examine the mRNA expression profiles. Under normal physiological conditions, the expression level of both HsFer-1 and HsFer-2 mRNA were the highest in hepatopancreas, moderate in gonad, axe foot, intestine, kidney, heart, gill, adductor muscle and mantle, the lowest in hemocytes. After stimulation with bacteria Aeromonas hydrophila, HsFer-1 mRNA experienced a different degree of increase in the tissues of hepatopancreas, gonad and hemocytes, the peak level was 2.47-fold, 9.59-fold and 1.37-fold, respectively. Comparatively, HsFer-2 showed up-regulation in gonad but down-regulation in hepatopancreas and hemocytes. Varying expression patterns indicate that two types of ferritins in H. schlegelii might play different roles in response to bacterial challenge. Further bacteriostatic analysis showed that both the purified recombinant ferritins inhibited the growth of A. hydrophila to a certain degree. Collectively, our results suggest that HsFer-1 and HsFer-2 are likely to be functional proteins involved in immune defense against bacterial infection.  相似文献   
18.
19.
Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection) or sural nerve (sensory protection). The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve.  相似文献   
20.
DNA damage tolerance consisting of template switching and translesion synthesis is a major cellular mechanism in response to unrepaired DNA lesions during replication. The Rev1 pathway constitutes the major mechanism of translesion synthesis and base damage-induced mutagenesis in model cell systems. Rev1 is a dCMP transferase, but additionally plays non-catalytic functions in translesion synthesis. Using the yeast model system, we attempted to gain further insights into the non-catalytic functions of Rev1. Rev1 stably interacts with Rad5 (a central component of the template switching pathway) via the C-terminal region of Rev1 and the N-terminal region of Rad5. Supporting functional significance of this interaction, both the Rev1 pathway and Rad5 are required for translesion synthesis and mutagenesis of 1,N6-ethenoadenine. Furthermore, disrupting the Rev1–Rad5 interaction by mutating Rev1 did not affect its dCMP transferase, but led to inactivation of the Rev1 non-catalytic function in translesion synthesis of UV-induced DNA damage. Deletion analysis revealed that the C-terminal 21-amino acid sequence of Rev1 is uniquely required for its interaction with Rad5 and is essential for its non-catalytic function. Deletion analysis additionally implicated a C-terminal region of Rev1 in its negative regulation. These results show that a non-catalytic function of Rev1 in translesion synthesis and mutagenesis is mediated by its interaction with Rad5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号