首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18941篇
  免费   1398篇
  国内免费   1273篇
  2024年   31篇
  2023年   230篇
  2022年   477篇
  2021年   923篇
  2020年   565篇
  2019年   810篇
  2018年   799篇
  2017年   564篇
  2016年   836篇
  2015年   1111篇
  2014年   1354篇
  2013年   1446篇
  2012年   1687篇
  2011年   1529篇
  2010年   980篇
  2009年   943篇
  2008年   1056篇
  2007年   982篇
  2006年   813篇
  2005年   688篇
  2004年   533篇
  2003年   522篇
  2002年   448篇
  2001年   344篇
  2000年   299篇
  1999年   289篇
  1998年   164篇
  1997年   159篇
  1996年   155篇
  1995年   117篇
  1994年   84篇
  1993年   71篇
  1992年   110篇
  1991年   82篇
  1990年   68篇
  1989年   52篇
  1988年   43篇
  1987年   43篇
  1986年   38篇
  1985年   51篇
  1984年   8篇
  1983年   17篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1974年   5篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 578 毫秒
211.
Three dimeric cassane diterpenoids, caesalpanins A–C, were isolated from the seeds of Caesalpinia sappan L., as well as three known compounds. Their structures were determined via analysis of 1D‐, 2D‐NMR, and HR‐ESI‐MS data. Caesalpanins A and B were the second and third compounds that presented a nitrogen‐containing cassane diterpenoid dimer linked through one ether bond between C‐19 and C‐20′. Caesalpanin B exhibited moderate cytotoxic activity against MCF‐7 cell lines with IC50 value of 29.98 μm . Caesalpanins A and B had weak inhibitory effects against LPS‐induced nitric oxide (NO) production in RAW 264.7 macrophages at 50 μm with inhibitory rate of 36.01 % and 32.93 %, respectively.  相似文献   
212.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
213.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   
214.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
215.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   
216.
Electrochemical reduction of carbon dioxide (CO2) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h?1, and metal mass activity reaching about 10 600 mA mg?1, outperforming current state‐of‐the‐art single atom catalysts for CO2 reduction to CO. DFT calculations suggest that the Ni@N3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N4, in addition to exothermic CO desorption, hence enhancing electrocatalytic CO2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO2 electrolysis.  相似文献   
217.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
218.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   
219.
220.
目的:汉黄芩素是中药黄芩中的一种黄酮,具有体内外抗癌活性。然而,汉黄芩素对人胃癌细胞的作用尚不十分清楚。本研究拟探讨汉黄芩素对人胃癌细胞MGC-803侵袭转移能力的影响及其对上皮间质转化(Epithelial to Mesenchymal Transition,EMT)的作用机制。方法:采用MTT法测定汉黄芩素对人胃癌细胞MGC-803增殖能力的影响,通过划痕实验、Transwell试验检测汉黄芩素对人胃癌细胞MGC-803迁移、侵袭能力的影响。通过免疫印迹法和免疫荧光法分析汉黄芩素对EMT的影响。结果:20μM以上浓度的汉黄芩素能抑制人胃癌细胞MGC-803的增殖,不同浓度的汉黄芩素能抑制人胃癌细胞MGC-803的迁移和侵袭,且呈浓度依赖性。此外,汉黄芩素能抑制间质标记蛋白波形蛋白(Vimentin)和锌指蛋白E-盒结合同源异形盒-1(ZEB1)的表达,促进上皮标记蛋白E-钙黏蛋白(E-cadherin)的表达。结论:汉黄芩素能抑制胃癌细胞的侵袭和迁移,这一作用可能与其抑制EMT的发生有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号