首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5328篇
  免费   509篇
  国内免费   210篇
  6047篇
  2023年   48篇
  2022年   119篇
  2021年   192篇
  2020年   126篇
  2019年   143篇
  2018年   150篇
  2017年   93篇
  2016年   171篇
  2015年   282篇
  2014年   298篇
  2013年   360篇
  2012年   397篇
  2011年   386篇
  2010年   248篇
  2009年   204篇
  2008年   266篇
  2007年   230篇
  2006年   253篇
  2005年   193篇
  2004年   208篇
  2003年   151篇
  2002年   130篇
  2001年   109篇
  2000年   107篇
  1999年   98篇
  1998年   40篇
  1997年   44篇
  1996年   38篇
  1995年   36篇
  1994年   43篇
  1993年   41篇
  1992年   66篇
  1991年   74篇
  1990年   47篇
  1989年   57篇
  1988年   57篇
  1987年   55篇
  1986年   46篇
  1985年   55篇
  1984年   43篇
  1983年   31篇
  1982年   23篇
  1981年   20篇
  1979年   31篇
  1978年   23篇
  1977年   18篇
  1975年   21篇
  1974年   22篇
  1973年   25篇
  1971年   17篇
排序方式: 共有6047条查询结果,搜索用时 31 毫秒
81.
植物的生活史由其有性生殖构件和营养体构件相互作用共同完成,克隆整合作为克隆植物的重要特征,其与有性生殖特征的相互作用关系却所知很少。该研究通过同质园种植实验,分析了空心莲子草的分株表型、生理、性别等与克隆整合的关系。结果表明:(1)克隆整合以及分株间是否连接对空心莲子草的表型特征、气体交换等生理性状和性别特征均有显著影响。(2)克隆整合显著缩小了雌雄同花和雄蕊心皮化两种性别植株间表型特征的差距,后代的性别特征与营养体表型特征显著相关。(3)在贫瘠的沙土基质中克隆整合明显增加了空心莲子草的营养体生长特征和气体交换等光合生理指标,但这种增加在富含有机质的塘泥基质中不明显。(4)居于不同土壤基质分株间的联系会减少分株表型特征和气体交换对生长环境的响应,并保持母体性别特征不受环境的影响,但单独居于沙土或塘泥单一土壤基质的分株性别特征却因受到环境影响而改变。因此,克隆整合有利于空心莲子草性别特征的稳定。  相似文献   
82.
Land plants in natural soil form intimate relationships with the diverse root bacterial microbiota. A growing body of evidence shows that these microbes are important for plant growth and health. Root microbiota composition has been widely studied in several model plants and crops; however, little is known about how root microbiota vary throughout the plant's life cycle under field conditions. We performed longitudinal dense sampling in field trials to track the time-series shift of the root microbiota from two representative rice cultivars in two separate locations in China. We found that the rice root microbiota varied dramatically during the vegetative stages and stabilized from the beginning of the reproductive stage, after which the root microbiota underwent relatively minor changes until rice ripening. Notably, both rice genotype and geographical location influenced the patterns of root microbiota shift that occurred during plant growth. The relative abundance of Deltaproteobacteria in roots significantly increased overtime throughout the entire life cycle of rice, while that of Betaproteobacteria, Firmicutes, and Gammaproteobacteria decreased. By a machine learning approach, we identified biomarker taxa and established a model to correlate root microbiota with rice resident time in the field(e.g., Nitrospira accumulated from 5 weeks/tillering in field-grown rice). Our work provides insights into the process of rice root microbiota establishment.  相似文献   
83.
84.
D Chu  H Pan  P Wan  J Wu  J Luo  H Zhu  J Chen 《Development (Cambridge, England)》2012,139(19):3561-3571
During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.  相似文献   
85.
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice.  相似文献   
86.
87.
Tea is the most common beverage after water. Concerns have been raised about the safety of tea during pregnancy, especially for embryo development. We aimed at studying the effects of active tea components on developing embryos by in vitro rat embryo culture. Rat embryos during early organogenesis were cultivated in serum supplemented with one of the tea catechins. Developmental hallmarks and malformations (Mal) in the developing embryos were compared and evaluated by a standard morphological scoring system. The embryotoxicity of each tea catechin was classified according to the European Center for the Validation of Alternative Methods. Cell viability was assessed by supervital dye staining, apoptosis by TUNEL assay, and peroxidation by the 8-isoprostane EIA method. We found that (+)-catechin had the least effect on developing embryos (Mal(50)=715.1 mg/L; IC50(Mal)=435 mg/L), whereas (-)-epigallocatechin gallate had the most adverse effect (Mal(50)=54.2 mg/L; IC50(Mal)=45.8 mg/L). The major malformation in affected embryos included caudal retardation with abnormal axial flexion and delayed hind-limb formation. All catechins were classified as nonembryotoxic except (-)-epigallocatechin gallate, which was classified as weakly embryotoxic. With (-)-epigallocatechin gallate, increased numbers of nonviable and apoptotic cells in the malformed embryos were associated with increased embryo 8-isoprostane.  相似文献   
88.
It has been predicted that elevated atmospheric CO2 will increase enzyme activity as a result of CO2-induced carbon entering the soil. The objective of this study was to investigate the effects of elevated atmospheric CO2 on soil enzyme activities under a rice/wheat rotation. This experiment was conducted in Wuxi, Jiangsu, China as part of the China FACE (Free Air Carbon Dioxide Enrichment) Project. Two atmospheric CO2 concentrations (580±60) and (380±40) μmol·mol-1) and three N application treatments (low-150, normal-250 and high-350 kg N·hm-2) were included. Soil samples (0-10 cm) were collected for analysis of β-glucosidase, invertase, urease, acid phosphates and β-glucosaminidase activities. The results revealed that with elevated atmospheric CO2 β-glucosidase activity significantly decreased (P < 0.05) at low N application rates; had no significant effect with a normal N application rate; and significantly increased (P < 0.05) with a high N application rate. For urease activity, at low and normal N application rates (but not high N application rate), elevated atmospheric CO2 significantly increased (P < 0.05) it. With acid phosphatase elevated atmospheric CO2 only had significant higher effects (P < 0.05) at high N application rates. Under different CO2 concentration, effects of N fertilization are also different. Soil β-glucosidase activity at ambient CO2 concentration decreased with N fertilization, while it increased at elevated CO2 concentration. In addition, invertase and acid phosphatase activities at elevated CO2 concentration, significantly increased (P < 0.05) with N treatments, but there was no effect with the ambient CO2 concentration. For urease activity, at ambient CO2 concentration, N fertilization increased it significantly (P < 0.05), whereas at elevated CO2 concentration it was not significant. Additionally, with β-glucosaminidase activity, there were no significant effects from N application. In general, then, elevated atmospheric CO2 increased soil enzyme activity, which may be attributed to the following two factors: (1) elevated atmospheric CO2 led to more plant biomass in the soil, which in turn stimulated soil microbial biomass and activity; and (2) elevated atmospheric CO2 increased plant photosynthesis, thereby increasing plant-derived soil enzymes.  相似文献   
89.
It has been predicted that elevated atmospheric CO2 will increase enzyme activity as a result of CO2-induced carbon entering the soil. The objective of this study was to investigate the effects of elevated atmospheric CO2 on soil enzyme activities under a rice/wheat rotation. This experiment was conducted in Wuxi, Jiangsu, China as part of the China FACE (Free Air Carbon Dioxide Enrichment) Project. Two atmospheric CO2 concentrations (580±60) and (380±40) μmol·mol-1) and three N application treatments (low-150, normal-250 and high-350 kg N·hm-2) were included. Soil samples (0-10 cm) were collected for analysis of β-glucosidase, invertase, urease, acid phosphates and β-glucosaminidase activities. The results revealed that with elevated atmospheric CO2 β-glucosidase activity significantly decreased (P < 0.05) at low N application rates; had no significant effect with a normal N application rate; and significantly increased (P < 0.05) with a high N application rate. For urease activity, at low and normal N application rates (but not high N application rate), elevated atmospheric CO2 significantly increased (P < 0.05) it. With acid phosphatase elevated atmospheric CO2 only had significant higher effects (P < 0.05) at high N application rates. Under different CO2 concentration, effects of N fertilization are also different. Soil β-glucosidase activity at ambient CO2 concentration decreased with N fertilization, while it increased at elevated CO2 concentration. In addition, invertase and acid phosphatase activities at elevated CO2 concentration, significantly increased (P < 0.05) with N treatments, but there was no effect with the ambient CO2 concentration. For urease activity, at ambient CO2 concentration, N fertilization increased it significantly (P < 0.05), whereas at elevated CO2 concentration it was not significant. Additionally, with β-glucosaminidase activity, there were no significant effects from N application. In general, then, elevated atmospheric CO2 increased soil enzyme activity, which may be attributed to the following two factors: (1) elevated atmospheric CO2 led to more plant biomass in the soil, which in turn stimulated soil microbial biomass and activity; and (2) elevated atmospheric CO2 increased plant photosynthesis, thereby increasing plant-derived soil enzymes.  相似文献   
90.
Five different crystals have been obtained for the first time from the aerial parts of Limonium aureum (L.)Hill ex kuntze. They were identified as follows: (Ⅰ) homoeriodictyol, (Ⅱ) naringenin, (Ⅲ) eriodictyol (Ⅳ) myricetin-3-O-β-D-glucoside and (Ⅴ) myricetin-3-O-β-D-galactoside.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号