首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1893篇
  免费   186篇
  国内免费   1篇
  2080篇
  2021年   19篇
  2020年   17篇
  2019年   15篇
  2018年   20篇
  2017年   29篇
  2016年   46篇
  2015年   64篇
  2014年   62篇
  2013年   104篇
  2012年   157篇
  2011年   116篇
  2010年   75篇
  2009年   57篇
  2008年   115篇
  2007年   99篇
  2006年   96篇
  2005年   101篇
  2004年   68篇
  2003年   80篇
  2002年   78篇
  2001年   42篇
  2000年   38篇
  1999年   34篇
  1998年   21篇
  1997年   22篇
  1996年   17篇
  1995年   15篇
  1994年   18篇
  1993年   24篇
  1992年   33篇
  1991年   11篇
  1990年   20篇
  1989年   13篇
  1987年   16篇
  1986年   13篇
  1985年   15篇
  1984年   13篇
  1983年   14篇
  1982年   22篇
  1981年   15篇
  1980年   14篇
  1979年   11篇
  1976年   13篇
  1975年   17篇
  1974年   17篇
  1973年   11篇
  1970年   17篇
  1969年   11篇
  1968年   11篇
  1966年   14篇
排序方式: 共有2080条查询结果,搜索用时 15 毫秒
81.
Parent of origin imprints on the genome have been implicated in the regulation of neural cell type differentiation. The ability of human parthenogenetic (PG) embryonic stem cells (hpESCs) to undergo neural lineage and cell type-specific differentiation is undefined. We determined the potential of hpESCs to differentiate into various neural subtypes. Concurrently, we examined DNA methylation and expression status of imprinted genes. Under culture conditions promoting neural differentiation, hpESC-derived neural stem cells (hpNSCs) gave rise to glia and neuron-like cells that expressed subtype-specific markers and generated action potentials. Analysis of imprinting in hpESCs and in hpNSCs revealed that maternal-specific gene expression patterns and imprinting marks were generally maintained in PG cells upon differentiation. Our results demonstrate that despite the lack of a paternal genome, hpESCs generate proliferating NSCs that are capable of differentiation into physiologically functional neuron-like cells and maintain allele-specific expression of imprinted genes. Thus, hpESCs can serve as a model to study the role of maternal and paternal genomes in neural development and to better understand imprinting-associated brain diseases.  相似文献   
82.
Yersinia pestis produces and secretes a toxin named pesticin that kills related bacteria of the same niche. Uptake of the bacteriocin is required for activity in the periplasm leading to hydrolysis of peptidoglycan. To understand the uptake mechanism and to investigate the function of pesticin, we combined crystal structures of the wild type enzyme, active site mutants, and a chimera protein with in vivo and in vitro activity assays. Wild type pesticin comprises an elongated N-terminal translocation domain, the intermediate receptor binding domain, and a C-terminal activity domain with structural analogy to lysozyme homologs. The full-length protein is toxic to bacteria when taken up to the target site via the outer or the inner membrane. Uptake studies of deletion mutants in the translocation domain demonstrate their critical size for import. To further test the plasticity of pesticin during uptake into bacterial cells, the activity domain was replaced by T4 lysozyme. Surprisingly, this replacement resulted in an active chimera protein that is not inhibited by the immunity protein Pim. Activity of pesticin and the chimera protein was blocked through introduction of disulfide bonds, which suggests unfolding as the prerequisite to gain access to the periplasm. Pesticin, a muramidase, was characterized by active site mutations demonstrating a similar but not identical residue pattern in comparison with T4 lysozyme.  相似文献   
83.
84.
Growing concentrations of N2O within the atmosphere have been accompanied by decreasing δ15N values, provoking the hypothesis of a global decline in the rate of N2O reduction relative to its production in soil. We estimate that the ratio of N2O produced to N2O reduced within the soil profile has declined by about 10–25% relative to its pre-industrial value. To a smaller extent, a reduction in the uptake of atmospheric N2O at the soil surface relative to its emission could also have contributed to the reported isotopic signal. This calls for a greater consideration of the process of N2O reduction in soil and its role in the global turnover of N2O.  相似文献   
85.
Michel W  Mai T  Naiser T  Ott A 《Biophysical journal》2007,92(3):999-1004
We investigate the kinetics of DNA hybridization reactions on glass substrates, where one 22 mer strand (bound-DNA) is immobilized via phenylene-diisothiocyanate linker molecule on the substrate, the dye-labeled (Cy3) complementary strand (free-DNA) is in solution in a reaction chamber. We use total internal reflection fluorescence for surface detection of hybridization. As a new feature we perform a simultaneous real-time measurement of the change of free-DNA concentration in bulk parallel to the total internal reflection fluorescence measurement. We observe that the free-DNA concentration decreases considerably during hybridization. We show how the standard Langmuir kinetics needs to be extended to take into account the change in bulk concentration and explain our experimental results. Connecting both measurements we can estimate the surface density of accessible, immobilized bound-DNA. We discuss the implications with respect to DNA microarray detection.  相似文献   
86.
Bacillus cereus is believed to be a soil bacterium, but studied solely in laboratory culture media. The aim of this study was to assess the physiology of B. cereus growing on soil organic matter by a proteomic approach. Cells were cultured to mid-exponential phase in soil extracted solubilized organic matter (SESOM), which mimics the nutrient composition of soil, and in Luria-Bertani broth as control. Silver staining of the two-dimensional gels revealed 234 proteins spots up-regulated when cells were growing in SESOM, with 201 protein spots down-regulated. Forty-three of these differentially expressed proteins were detected by Colloidal Coomassie staining and identified by matrix assisted laser desorption ionization-time of flight MS of tryptic digests. These differentially expressed proteins covered a range of functions, primarily amino acid, lipid, carbohydrate and nucleic acid metabolism. These results suggested growth on soil-associated carbohydrates, fatty acids and/or amino acids, concomitant with shifts in cellular structure.  相似文献   
87.
The proposed function of intermediate filaments is to provide a cell type-specific structural framework that maintains cell shape and organelle distribution and mediates signal transduction through its connections with the plasma membrane and the nucleus. Vimentin is the intermediate filament protein expressed in B lymphocytes. Immunocytochemical analysis of the high salt-stable cytoskeletons from B cells stimulated with anti-Ig revealed an increased accumulation of vimentin in the cytoskeleton compared to nontreated controls. This increased accumulation of vimentin in the cytoskeleton was manifested by the organization of vimentin into extensive filamentous arrays (EFA) as viewed in the fluorescent microscope. In contrast to the effects of anti-Ig, activation of B cells with LPS did not induce the organization of vimentin into EFA. This suggested that signals unique to anti-Ig directed EFA formation. Immunocytochemical results were verified by biochemical analysis showing that vimentin was more abundant in isolated cytoskeletons from anti-Ig activated B cells, than cytoskeletons isolated from LPS-activated B cells. These observations established a relationship between increased content of vimentin in the cytoskeleton and the formation of EFA. By testing a wide variety of activating agents, we were able to correlate increased vimentin expression in the cytoskeleton to activating agents that cross-link membrane Ig. It appeared that treatment of B cells with LPS prohibited the induction of EFA by anti-Ig because cotreatment with both anti-Ig and LPS resulted in decreased vimentin accumulation in the cytoskeleton to a level less than that in resting cells. The significance of these results with regard to B cell biology is discussed.  相似文献   
88.
Serine proteases are involved in many processes in the nervous system and specific inhibitors tightly control their proteolytic activity. Thrombin is thought to play a role in tissue development and homeostasis. To date, protease nexin-1 is the only known endogenous protease inhibitor that specifically interferes with thrombotic activity and is expressed in the brain. In this study, we report the detection of a novel thrombin inhibitory activity in the brain of protease nexin-1(-/-) mice. Purification and subsequent analysis by tandem mass spectrometry identified this protein as the phosphatidylethanolamine-binding protein (PEBP). We demonstrate that PEBP exerts inhibitory activity against several serine proteases including thrombin, neuropsin, and chymotrypsin, whereas trypsin, tissue type plasminogen activator, and elastase are not affected. Since PEBP does not share significant homology with other serine protease inhibitors, our results define it as the prototype of a novel class of serine protease inhibitors. PEBP immunoreactivity is found on the surface of Rat-1 fibroblast cells and although its sequence contains no secretion signal, PEBP-H(6) can be purified from the conditioned medium upon recombinant expression.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号