首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2941篇
  免费   282篇
  国内免费   1篇
  2023年   28篇
  2022年   47篇
  2021年   116篇
  2020年   66篇
  2019年   79篇
  2018年   91篇
  2017年   84篇
  2016年   128篇
  2015年   169篇
  2014年   192篇
  2013年   240篇
  2012年   319篇
  2011年   290篇
  2010年   140篇
  2009年   130篇
  2008年   178篇
  2007年   174篇
  2006年   149篇
  2005年   117篇
  2004年   101篇
  2003年   95篇
  2002年   87篇
  2001年   32篇
  2000年   25篇
  1999年   17篇
  1998年   17篇
  1997年   16篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   11篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1975年   2篇
  1974年   1篇
  1972年   4篇
  1971年   2篇
  1967年   2篇
  1965年   1篇
  1956年   2篇
排序方式: 共有3224条查询结果,搜索用时 15 毫秒
91.
One of the more unusual groups of insect pathogens consists of members of the family Polydnaviridae, insect DNA viruses that live in mutual symbioses with their associated parasitoid wasp (Hymentoptera) carriers until they are injected into specific lepidopteran hosts. Once inside this secondary host, polydnaviruses cause a wide variety of negative effects that ultimately ensure the survival of the parasitoid larvae. Because of their unusual life strategy and genetic features, it had been difficult to fully characterise polydnaviruses in terms of evolutionary history, replication cycle and functions in the host that might normally be well characterised for more conventional viruses. Recently, our understanding of polydnavirus evolutionary origins, gene content, genome organisation and functions in parasitism has greatly increased. Key findings are summarised in this review with emphasis on evolution of polydnavirus genes and genomes, their functional roles in insect pathology and their potential applications in insect biological control and biotechnology.  相似文献   
92.
The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.  相似文献   
93.
Cardiolipin is a mitochondrion-specific phospholipid that stabilizes the assembly of respiratory chain complexes, favoring full-yield operation. It also mediates key steps in apoptosis. In Barth syndrome, an X chromosome-linked cardiomyopathy caused by tafazzin mutations, cardiolipins display acyl chain modifications and are present at abnormally low concentrations, whereas monolysocardiolipin accumulates. Using immortalized lymphoblasts from Barth syndrome patients, we showed that the production of abnormal cardiolipin led to mitochondrial alterations. Indeed, the lack of normal cardiolipin led to changes in electron transport chain stability, resulting in cellular defects. We found a destabilization of the supercomplex (respirasome) I + III2 + IVn but also decreased amounts of individual complexes I and IV and supercomplexes I + III and III + IV. No changes were observed in the amounts of individual complex III and complex II. We also found decreased levels of complex V. This complex is not part of the supercomplex suggesting that cardiolipin is required not only for the association/stabilization of the complexes into supercomplexes but also for the modulation of the amount of individual respiratory chain complexes. However, these alterations were compensated by an increase in mitochondrial mass, as demonstrated by electron microscopy and measurements of citrate synthase activity. We suggest that this compensatory increase in mitochondrial content prevents a decrease in mitochondrial respiration and ATP synthesis in the cells. We also show, by extensive flow cytometry analysis, that the type II apoptosis pathway was blocked at the mitochondrial level and that the mitochondria of patients with Barth syndrome cannot bind active caspase-8. Signal transduction is thus blocked before any mitochondrial event can occur. Remarkably, basal levels of superoxide anion production were slightly higher in patients' cells than in control cells as previously evidenced via an increased protein carbonylation in the taz1Δ mutant in the yeast. This may be deleterious to cells in the long term. The consequences of mitochondrial dysfunction and alterations to apoptosis signal transduction are considered in light of the potential for the development of future treatments.  相似文献   
94.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   
95.
96.
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world''s oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms.  相似文献   
97.
98.
Conventional calpains are ubiquitous cysteine proteases whose activity is promoted by calcium signaling and specifically limited by calpastatin. Calpain expression has been shown to be increased in human malignant cells, but the contribution of the calpain/calpastatin system in tumorigenesis remains unclear. It may play an important role in tumor cells themselves (cell growth, migration, and a contrario cell death) and/or in tumor niche (tissue infiltration by immune cells, neo-angiogenesis). In this study, we have used a mouse model of melanoma as a tool to gain further understanding of the role of calpains in tumor progression. To determine the respective importance of each target, we overexpressed calpastatin in tumor and/or host in isolation. Our data demonstrate that calpain inhibition in both tumor and host blunts tumor growth, while paradoxically increasing metastatic dissemination to regional lymph nodes. Specifically, calpain inhibition in melanoma cells limits tumor growth in vitro and in vivo but increases dissemination by amplifying cell resistance to apoptosis and accelerating migration process. Meanwhile, calpain inhibition restricted to host cells blunts tumor infiltration by immune cells and angiogenesis required for antitumor immunity, allowing tumor cells to escape tumor niche and disseminate. The development of highly specific calpain inhibitors with potential medical applications in cancer should take into account the opposing roles of the calpain/calpastatin system in initial tumor growth and subsequent metastatic dissemination.  相似文献   
99.
Boerhaavia diffusa L. is used in the traditional medicine of several Asian countries. The isolation and identification of five new compounds, together with 11 known compounds, from the ethyl acetate extract of the aerial part of B. diffusa grown Vietnam is reported. The structure of the new compounds was established by 1D and 2D NMR spectroscopy, and high resolution ESI-MS analysis. New compounds are two rotenoids: 9,11-dihydroxy-6,10-dimethoxy[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one (boeravinone P, 3) and 3-[2-(β-d-glucopyranosyloxy)-3-hydroxyphenyl]-5-hydroxy-2-hydroxymethyl-7-methoxy-6-methyl-4H-1-benzopyran-4-one (boeravinone Q, 9), an atropisomeric mixture of two rotenoid glycosides (3′,5-dihydroxy-2-hydroxymethyl-7-methoxy-6-methylisoflavone 2′-O-β-d-glucopyranoside, 11), a sesquiterpene lactone (4,10-dihydroxy-8-methoxyguai-7(11)-en-8,12-olide, 5) and a new phenylpropanoid glycoside (boerhaavic acid, 15).  相似文献   
100.
Maintenance of genetic variation is of critical importance for wild populations since low levels limit the species’ ability to respond to different threats (diseases, predators, environmental changes) in both the long and the short term. Human activities could impact the genetic variation of wild species in multiple ways, including via fragmentation and harvesting. We used an individual-based landscape genetics approach to describe the impact of landscape elements and trapping pressure on the spatial genetic structure of a large sample (n = 370) of the stone marten (Martes foina) in central-eastern France (Bresse). An analysis of isolation-by-resistance using a causal modeling approach showed an influence of landscape cover and/or trapping pressure on gene flow according to age and sex class. Overall, the connectivity in the study area is provided mainly by vegetation cover, while roads and open areas partially impede it. Unexpectedly for this “urban adapter” species, buildings could reduce gene flow. We also emphasized the sex-dependent effect of trapping on gene flow. Genetic differentiation in males was influenced by trapping pressure and landscape structure while only the latter influenced genetic differentiation in females. A stronger isolation by distance in males than in females suggested that at the scale of the study area, males are more exposed to trapping pressure, which reduces effective dispersal. Overall, the combination of both landscape and trapping costs might create an ‘ecological trap’ that could disrupt gene flow, leading to a north–south division in the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号