首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2917篇
  免费   183篇
  2023年   20篇
  2022年   36篇
  2021年   75篇
  2020年   47篇
  2019年   63篇
  2018年   79篇
  2017年   61篇
  2016年   97篇
  2015年   150篇
  2014年   178篇
  2013年   174篇
  2012年   235篇
  2011年   192篇
  2010年   134篇
  2009年   103篇
  2008年   147篇
  2007年   153篇
  2006年   125篇
  2005年   115篇
  2004年   115篇
  2003年   108篇
  2002年   103篇
  2001年   25篇
  2000年   15篇
  1999年   11篇
  1998年   33篇
  1997年   14篇
  1996年   15篇
  1995年   25篇
  1994年   13篇
  1993年   14篇
  1992年   25篇
  1991年   15篇
  1990年   14篇
  1989年   16篇
  1988年   16篇
  1987年   12篇
  1986年   10篇
  1985年   14篇
  1984年   12篇
  1981年   15篇
  1980年   12篇
  1978年   10篇
  1976年   9篇
  1973年   14篇
  1971年   9篇
  1967年   7篇
  1966年   7篇
  1935年   7篇
  1917年   7篇
排序方式: 共有3100条查询结果,搜索用时 31 毫秒
311.
While chromophore attachment to alpha-subunits of cyanobacterial biliproteins has been studied in some detail, little is known about this process in beta-subunits. The ones of phycoerythrocyanin and C-phycocyanin each carry two phycocyanobilin (PCB) chromophores covalently attached to cysteins beta84 and beta155. The differential nonenzymatic reconstitution of PCB to the apoproteins, PecA, PecB, CpcA and CpcB, as well as to mutant proteins of the beta-subunits lacking either one of the two binding cysteins, was studied using overexpression of the respective genes. PCB adds selectively to Cys-84 of CpcA, CpcB, PecA, and PecB, but the bound chromophore has a nonnative configuration, and in the case of CpcA, is partly oxidized to mesobiliverdin (MBV). The oxidation is independent of thiols but can be suppressed by ascorbate. The addition to Cys-beta84 is suppressed in the presence of detergents like Triton X-100, in favor of an addition to Cys-beta155 yielding the correctly bound chromophore. Triton X-100 also inhibits oxidation of the chromophore during addition to CpcA. The effect of Triton X-100 was studied on the isolated components of the reconstitution system. Absorption, fluorescence and circular dichroism spectra indicate a major conformational change of the chromophore upon addition of the detergent, which probably controls the site selectivity of the addition reaction, and inhibits the oxidation of PCB to MBV.  相似文献   
312.
The solution structure of the ternary MutT enzyme-Mg(2+)-8-oxo-dGMP complex showed the proximity of Asn119 and Arg78 and the modified purine ring of 8-oxo-dGMP, suggesting specific roles for these residues in the tight and selective binding of this nucleotide product [Massiah, M. A., Saraswat, V., Azurmendi, H. F., and Mildvan, A. S. (2003) Biochemistry 42, 10140-10154]. These roles are here tested by mutagenesis. The N119A, N119D, R78K, and R78A single mutations and the R78K/N119A double mutant showed very small effects on k(cat) (相似文献   
313.
Acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC) catalyze the carboxylation of acetyl- and propionyl-CoA to generate malonyl- and methylmalonyl-CoA, respectively. Understanding the substrate specificity of ACC and PCC will (1) help in the development of novel structure-based inhibitors that are potential therapeutics against obesity, cancer, and infectious disease and (2) facilitate bioengineering to provide novel extender units for polyketide biosynthesis. ACC and PCC in Streptomyces coelicolor are multisubunit complexes. The core catalytic beta-subunits, PccB and AccB, are 360 kDa homohexamers, catalyzing the transcarboxylation between biotin and acyl-CoAs. Apo and substrate-bound crystal structures of PccB hexamers were determined to 2.0-2.8 A. The hexamer assembly forms a ring-shaped complex. The hydrophobic, highly conserved biotin-binding pocket was identified for the first time. Biotin and propionyl-CoA bind perpendicular to each other in the active site, where two oxyanion holes were identified. N1 of biotin is proposed to be the active site base. Structure-based mutagenesis at a single residue of PccB and AccB allowed interconversion of the substrate specificity of ACC and PCC. The di-domain, dimeric interaction is crucial for enzyme catalysis, stability, and substrate specificity; these features are also highly conserved among biotin-dependent carboxyltransferases. Our findings enable bioengineering of the acyl-CoA carboxylase (ACCase) substrate specificity to provide novel extender units for the combinatorial biosynthesis of polyketides.  相似文献   
314.
Formaldehyde is a well known cross-linking agent that can inactivate, stabilize, or immobilize proteins. The purpose of this study was to map the chemical modifications occurring on each natural amino acid residue caused by formaldehyde. Therefore, model peptides were treated with excess formaldehyde, and the reaction products were analyzed by liquid chromatography-mass spectrometry. Formaldehyde was shown to react with the amino group of the N-terminal amino acid residue and the side-chains of arginine, cysteine, histidine, and lysine residues. Depending on the peptide sequence, methylol groups, Schiff-bases, and methylene bridges were formed. To study intermolecular cross-linking in more detail, cyanoborohydride or glycine was added to the reaction solution. The use of cyanoborohydride could easily distinguish between peptides containing a Schiff-base or a methylene bridge. Formaldehyde and glycine formed a Schiff-base adduct, which was rapidly attached to primary N-terminal amino groups, arginine and tyrosine residues, and, to a lesser degree, asparagine, glutamine, histidine, and tryptophan residues. Unexpected modifications were found in peptides containing a free N-terminal amino group or an arginine residue. Formaldehyde-glycine adducts reacted with the N terminus by means of two steps: the N terminus formed an imidazolidinone, and then the glycine was attached via a methylene bridge. Two covalent modifications occurred on an arginine-containing peptide: (i) the attachment of one glycine molecule to the arginine residue via two methylene bridges, and (ii) the coupling of two glycine molecules via four methylene bridges. Remarkably, formaldehyde did not generate intermolecular cross-links between two primary amino groups. In conclusion, the use of model peptides enabled us to determine the reactivity of each particular cross-link reaction as a function of the reaction conditions and to identify new reaction products after incubation with formaldehyde.  相似文献   
315.
The plasma membrane calcium ATPase (PMCA) actively transports Ca(2+) from the cytosol to the extra cellular space. The C-terminal segment of the PMCA functions as an inhibitory domain by interacting with the catalytic core. Ca(2+)-calmodulin binds to the C-terminal segment and stops inhibition. Here we showed that residue Asp(170), in the putative "A" domain of human PMCA isoform 4xb, plays a critical role in autoinhibition. In the absence of calmodulin a PMCA containing a site-specific mutation of D170N had 80% of the maximum activity of the calmodulin-activated PMCA and a similar high affinity for Ca(2+). The mutation did not change the activation of the PMCA by ATP. Deletion of the C-terminal segment further downstream of the calmodulin-binding site led to an additional increase in the maximal activity of the mutant, which suggests that the mutation did not affect the inhibition because of this portion of the C-terminal segment. The calmodulin-activated PMCA was more sensitive to vanadate inhibition than the autoinhibited enzyme. In contrast, inhibition of the D170N mutant required higher concentrations of vanadate and was not affected by calmodulin. Despite its higher basal activity, the mutant had an apparent affinity for calmodulin similar to that of the wild type enzyme, and its rate of proteolysis at the C-terminal segment was still calmodulin-dependent. Altogether these results suggest that activation by mutation D170N does not involve the displacement of the calmodulin-binding autoinhibitory domain from the catalytic core and may arise directly from changes in the accessibility to the calcium-binding residues of the pump.  相似文献   
316.
Two types of geminate structures were purified from African cassava mosaic geminivirus (ACMV)-infected Nicotiana benthamiana plants and analyzed by electron cryomicroscopy and image reconstruction. After cesium sulfate density gradient centrifugation, they were separated into lighter top (T) and heavier bottom (B) components. T particles comigrated with host proteins, whereas B particles were concentrated in a cesium density typical for complete virions. Both particles were composed of two incomplete icosahedra of 11 capsomers each, but T particles were slightly larger (diameter, 22.5 nm) and less dense in the interior than B particles (diameter, 21.5 nm). T particles were frequently associated with small globules of approximately 14 nm diameter of unknown origin. The overall structure of ACMV, a begomovirus transmitted by whiteflies, was similar to that of Maize streak virus (MSV), a mastrevirus transmitted by leafhoppers, although the vertices of the icosahedra were less pronounced. Models of ACMV coat proteins based on Satellite tobacco necrosis virus support the exposure of parts of the molecule essential for transmission specificity by whiteflies and provide possible structural explanations for the smaller protrusion of the ACMV capsid relative to MSV. The differences of ACMV and MSV virion shapes are discussed with reference to their different animal vectors.  相似文献   
317.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   
318.
One of the hallmarks of cell death is the cell surface-expression of phosphatidylserine. Expression of phosphatidylserine at the cell surface can be measured in vitro with the phosphatidylserine-binding protein annexin A5 conjugated to fluorochromes. This measurement can be made by flow cytometry or by confocal scanning-laser microscopy. The annexin A5 affinity assay comprises the incubation of cells stimulated to execute cell death with fluorescence-labeled annexin A5 and propidium iodide. Living cells are annexin A5-negative and propidium iodide negative, cells in the early phases of cell death are annexin A5 positive-and propidium iodide-negative, and secondary necrotic cells are annexin A5-positive and propidium iodide-positive. The entire procedure takes about 30 minutes for flow cytometry and 45 minutes for confocal scanning-laser microscopy. Various precautions and considerations are discussed further in the protocol described here.  相似文献   
319.
Acetylcholine is the major excitatory neurotransmitter in the central nervous system of insects. Mutant analysis of the Dalpha7 nicotinic acetylcholine receptor (nAChR) of Drosophila shows that it is required for the giant fiber-mediated escape behavior. The Dalpha7 protein is enriched in the dendrites of the giant fiber, and electrophysiological analysis of the giant fiber circuit showed that sensory input to the giant fiber is disrupted, as is transmission at an identified cholinergic synapse between the peripherally synapsing interneuron and the dorsal lateral muscle motor neuron. Moreover, we found that gfA1, a mutation identified in a screen for giant fiber defects more than twenty years ago, is an allele of Dalpha7. Therefore, a combination of behavioral, electrophysiological, anatomical, and genetic data indicate an essential role for the Dalpha7 nAChR in giant fiber-mediated escape in Drosophila.  相似文献   
320.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号