首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2939篇
  免费   185篇
  3124篇
  2023年   22篇
  2022年   41篇
  2021年   75篇
  2020年   48篇
  2019年   63篇
  2018年   80篇
  2017年   62篇
  2016年   96篇
  2015年   151篇
  2014年   180篇
  2013年   178篇
  2012年   238篇
  2011年   193篇
  2010年   135篇
  2009年   103篇
  2008年   147篇
  2007年   154篇
  2006年   125篇
  2005年   115篇
  2004年   116篇
  2003年   108篇
  2002年   104篇
  2001年   25篇
  2000年   15篇
  1999年   11篇
  1998年   33篇
  1997年   14篇
  1996年   15篇
  1995年   25篇
  1994年   13篇
  1993年   14篇
  1992年   25篇
  1991年   15篇
  1990年   14篇
  1989年   16篇
  1988年   16篇
  1987年   12篇
  1986年   10篇
  1985年   14篇
  1984年   12篇
  1981年   15篇
  1980年   12篇
  1978年   10篇
  1976年   9篇
  1973年   14篇
  1971年   9篇
  1967年   7篇
  1966年   7篇
  1935年   7篇
  1917年   7篇
排序方式: 共有3124条查询结果,搜索用时 15 毫秒
51.
The detection of molecular signatures of selection is one of the major concerns of modern population genetics. A widely used strategy in this context is to compare samples from several populations and to look for genomic regions with outstanding genetic differentiation between these populations. Genetic differentiation is generally based on allele frequency differences between populations, which are measured by FST or related statistics. Here we introduce a new statistic, denoted hapFLK, which focuses instead on the differences of haplotype frequencies between populations. In contrast to most existing statistics, hapFLK accounts for the hierarchical structure of the sampled populations. Using computer simulations, we show that each of these two features—the use of haplotype information and of the hierarchical structure of populations—significantly improves the detection power of selected loci and that combining them in the hapFLK statistic provides even greater power. We also show that hapFLK is robust with respect to bottlenecks and migration and improves over existing approaches in many situations. Finally, we apply hapFLK to a set of six sheep breeds from Northern Europe and identify seven regions under selection, which include already reported regions but also several new ones. We propose a method to help identifying the population(s) under selection in a detected region, which reveals that in many of these regions selection most likely occurred in more than one population. Furthermore, several of the detected regions correspond to incomplete sweeps, where the favorable haplotype is only at intermediate frequency in the population(s) under selection.  相似文献   
52.
Increasing contamination of soil and groundwater with benzene, toluene, and xylene (BTX) due to activities of the chemical and oil refinery industry has caused serious environmental damage. Efficient methods are required to isolate and degrade them. Microorganisms associated with rhizosphere soil are considered efficient agents to remediate hydrocarbon contamination. In this study, we obtained a stabilized bacterial consortium from the rhizosphere soil of Cyperus sp. grown in a petroleum-contaminated field in Southern Mexico. This consortium was able to completely degrade BTX in 14 days. Bacteria isolated from the consortium were identified by 16S rRNA gene sequence analysis as Ralstonia insidiosa, Cellulomonas hominis, Burkholderia kururiensis, and Serratia marcescens. The BTX-degradation capacity of the bacterial consortium was confirmed by the detection of genes pheA, todC1, and xylM, which encoded phenol hydroxylase, toluene 1,2-dioxygenase, and xylene monooxygenase, respectively. Our results demonstrate feasibility of BTX biodegradation by indigenous bacteria that might be used for soil remediation in Southern Mexico.  相似文献   
53.
54.

Introduction

Tissue plasminogen activator (tPA)-activity and plasminogen activator inhibitor type 1 (PAI-1) antigen are considered to be haemostasis-related markers of endothelial activation and relate to presence of cerebral white matter hyperintensities (WMH) as was earlier shown in a cross-sectional study. We investigated whether tPA-activity and PAI-1 levels are associated with WMH progression in a longitudinal study.

Methods

In 127 first-ever lacunar stroke patients in whom baseline brain MRI and plasma levels of tPA-activity and PAI-1-antigen were available, we obtained a 2-year follow-up MRI. We assessed WMH progression by a visual WMH change scale. We determined the relationship between levels of tPA-activity and PAI-1 and WMH progression, by logistic regression analysis.

Results

Plasma tPA-activity was associated with periventricular WMH progression (OR 2.36, 95% CI 1.01–5.49, with correction for age and sex and baseline presence of WMH), but not with deep or any (periventricular and/or deep) WMH progression. PAI-1 levels were lower in patients with WMH progression, but these results were not significant.

Conclusion

We found a relationship between plasma tPA-activity and progression of periventricular WMH. More research is needed to determine whether there is a (direct) role of tPA in the development and progression of WMH.  相似文献   
55.
56.
The cellulose biosynthesis inhibitor 2,6‐dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize‐cultured cells with a reduced amount of cellulose (~20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short‐term exposure to DCB of non‐habituated maize‐cultured cells induced a substantial increase in oxidative damage. Concomitantly, short‐term treated cells presented an increase in class III peroxidase and glutathione S‐transferase activities and total glutathione content. Maize cells habituated to 0.3–1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S‐transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB‐habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 μM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize‐cultured cells.  相似文献   
57.
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5?% along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52–76?% improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.  相似文献   
58.
Dementia is the cardinal feature of Alzheimer's disease (AD), yet the clinical symptoms of this disorder also include a marked loss of motor function. Tau abnormal hyperphosphorylation and malfunction are well‐established key events in AD neuropathology but the impact of the loss of normal Tau function in neuronal degeneration and subsequent behavioral deficits is still debated. While Tau reduction has been increasingly suggested as therapeutic strategy against neurodegeneration, particularly in AD, there is controversial evidence about whether loss of Tau progressively impacts on motor function arguing about damage of CNS motor components. Using a variety of motor‐related tests, we herein provide evidence of an age‐dependent motor impairment in Tau?/? animals that is accompanied by ultrastructural and functional impairments of the efferent fibers that convey motor‐related information. Specifically, we show that the sciatic nerve of old (17–22‐months) Tau?/? mice displays increased degenerating myelinated fibers and diminished conduction properties, as compared to age‐matched wild‐type (Tau+/+) littermates and younger (4–6 months) Tau?/? and Tau+/+ mice. In addition, the sciatic nerves of Tau?/? mice exhibit a progressive hypomyelination (assessed by g‐ratio) specifically affecting large‐diameter, motor‐related axons in old animals. These findings suggest that loss of Tau protein may progressively impact on peripheral motor system.  相似文献   
59.
The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).  相似文献   
60.
Comprehensive analysis of the complex nature of the Human Leukocyte Antigen (HLA) class II ligandome is of utmost importance to understand the basis for CD4+ T cell mediated immunity and tolerance. Here, we implemented important improvements in the analysis of the repertoire of HLA-DR-presented peptides, using hybrid mass spectrometry-based peptide fragmentation techniques on a ligandome sample isolated from matured human monocyte-derived dendritic cells (DC). The reported data set constitutes nearly 14 thousand unique high-confident peptides, i.e. the largest single inventory of human DC derived HLA-DR ligands to date. From a technical viewpoint the most prominent finding is that no single peptide fragmentation technique could elucidate the majority of HLA-DR ligands, because of the wide range of physical chemical properties displayed by the HLA-DR ligandome. Our in-depth profiling allowed us to reveal a strikingly poor correlation between the source proteins identified in the HLA class II ligandome and the DC cellular proteome. Important selective sieving from the sampled proteome to the ligandome was evidenced by specificity in the sequences of the core regions both at their N- and C- termini, hence not only reflecting binding motifs but also dominant protease activity associated to the endolysosomal compartments. Moreover, we demonstrate that the HLA-DR ligandome reflects a surface representation of cell-compartments specific for biological events linked to the maturation of monocytes into antigen presenting cells. Our results present new perspectives into the complex nature of the HLA class II system and will aid future immunological studies in characterizing the full breadth of potential CD4+ T cell epitopes relevant in health and disease.Human Leukocyte Antigen (HLA)1 class II molecules on professional antigen presenting cells such as dendritic cells (DC) expose peptide fragments derived from exogenous and endogenous proteins to be screened by CD4+ T cells (1, 2). The activation and recruitment of CD4+ T cells recognizing disease-related peptide antigens is critical for the development of efficient antipathogen or antitumor immunity. Furthermore, the presentation of self-peptides and their interaction with CD4+ T cells is essential to maintain immunological tolerance and homeostasis (3). Knowledge of the nature of HLA class II-presented peptides on DC is of great importance to understand the rules of antigen processing and peptide binding motifs (4), whereas the identity of disease-related antigens may provide new knowledge on immunogenicity and leads for the development of vaccines and immunotherapy (5, 6).Mass spectrometry (MS) has proven effective for the analysis HLA class II-presented peptides (4, 7, 8). MS-based ligandome studies have demonstrated that HLA class II molecules predominantly present peptides derived from exogenous proteins that entered the cells by endocytosis and endogenous proteins that are associated with the endo-lysosomal compartments (4). Yet proteins residing in the cytosol, nucleus or mitochondria can also be presented by HLA class II molecules, primarily through autophagy (911). Multiple studies have mapped the HLA class II ligandome of antigen presenting cells in the context of infectious pathogens (12), autoimmune diseases (1317) or cancer (14, 18, 19), or those that are essential for self-tolerance in the human thymus (3, 20). Notwithstanding these efforts, and certainly not in line with the extensive knowledge on the HLA class I ligandome (21), the nature of the HLA class II-presented peptide repertoire and particular its relationship to the cellular source proteome remains poorly understood.To advance our knowledge on the HLA-DR ligandome on activated DC without having to deal with limitations in cell yield from peripheral human blood (12, 21, 22) or tissue isolates (3), we explored the use of MUTZ-3 cells. This cell line has been used as a model of human monocyte-derived DCs. MUTZ-3 cells can be matured to act as antigen presenting cells and express then high levels of HLA class II molecules, and can be propagated in vitro to large cell densities (2325). We also evaluated the performance of complementary and hybrid MS fragmentation techniques electron-transfer dissociation (ETD), electron-transfer/higher-energy collision dissociation (EThcD) (26), and higher-energy collision dissociation (HCD) to sequence and identify the HLA class II ligandome. Together this workflow allowed for the identification of an unprecedented large set of about 14 thousand unique peptide sequences presented by DC derived HLA-DR molecules, providing an in-depth view of the complexity of the HLA class II ligandome, revealing underlying features of antigen processing and surface-presentation to CD4+ T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号