首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   24篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   11篇
  2014年   14篇
  2013年   11篇
  2012年   22篇
  2011年   23篇
  2010年   13篇
  2009年   10篇
  2008年   16篇
  2007年   15篇
  2006年   15篇
  2005年   10篇
  2004年   8篇
  2003年   16篇
  2002年   11篇
  2001年   20篇
  2000年   12篇
  1999年   16篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1993年   10篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   9篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   5篇
  1982年   6篇
  1981年   7篇
  1977年   3篇
  1976年   2篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
71.
72.

Background

Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity.

Results

To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntenic orthologs across all analyzed genomes.

Conclusion

By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-966) contains supplementary material, which is available to authorized users.  相似文献   
73.
Landscapes influence precipitation via the water vapor and energy fluxes they generate. Biologically active landscapes also generate aerosols containing microorganisms, some being capable of catalyzing ice formation and crystal growth in clouds at temperatures near 0 °C. The resulting precipitation is beneficial for the growth of plants and microorganisms. Mounting evidence from observations and numerical simulations support the plausibility of a bioprecipitation feedback cycle involving vegetated landscapes and the microorganisms they host. Furthermore, the evolutionary history of ice nucleation‐active bacteria such as Pseudomonas syringae supports that they have been part of this process on geological time scales since the emergence of land plants. Elucidation of bioprecipitation feedbacks involving landscapes and their microflora could contribute to appraising the impact that modified landscapes have on regional weather and biodiversity, and to avoiding inadvertent, negative consequences of landscape management.  相似文献   
74.

Background

The simian malaria parasite, Plasmodium knowlesi, can cause severe and fatal disease in humans yet it is rarely included in routine public health reporting systems for malaria and its geographical range is largely unknown. Because malaria caused by P. knowlesi is a truly neglected tropical disease, there are substantial obstacles to defining the geographical extent and risk of this disease. Information is required on the occurrence of human cases in different locations, on which non-human primates host this parasite and on which vectors are able to transmit it to humans. We undertook a systematic review and ranked the existing evidence, at a subnational spatial scale, to investigate the potential geographical range of the parasite reservoir capable of infecting humans.

Methodology/Principal Findings

After reviewing the published literature we identified potential host and vector species and ranked these based on how informative they are for the presence of an infectious parasite reservoir, based on current evidence. We collated spatial data on parasite occurrence and the ranges of the identified host and vector species. The ranked spatial data allowed us to assign an evidence score to 475 subnational areas in 19 countries and we present the results on a map of the Southeast and South Asia region.

Conclusions/Significance

We have ranked subnational areas within the potential disease range according to evidence for presence of a disease risk to humans, providing geographical evidence to support decisions on prevention, management and prophylaxis. This work also highlights the unknown risk status of large parts of the region. Within this unknown category, our map identifies which areas have most evidence for the potential to support an infectious reservoir and are therefore a priority for further investigation. Furthermore we identify geographical areas where further investigation of putative host and vector species would be highly informative for the region-wide assessment.  相似文献   
75.
76.
77.
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (< 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (< 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.  相似文献   
78.
The conserved influenza virus hemagglutinin (HA) stem domain elicits cross-reactive antibodies, but epitopes in the globular head typically elicit strain-specific responses because of the hypervariability of this region. We isolated human monoclonal antibody 5J8, which neutralized a broad spectrum of 20th century H1N1 viruses and the 2009 pandemic H1N1 virus. Fine mapping of the interaction unexpectedly revealed a novel epitope between the receptor-binding pocket and the Ca2 antigenic site on HA. This antibody exposes a new mechanism underlying broad immunity against H1N1 influenza viruses and identifies a conserved epitope that might be incorporated into engineered H1 virus vaccines.  相似文献   
79.
Previous studies suggest that oligodeoxynucleotide (ODN) cellular uptake is cell cycle-dependent which may have important implications in cancer cell targeting. To further our understanding of ODN transport and activity, this study examines the relationships between the cell cycle, ODN cellular uptake, intracellular transport, and activity. An antisense c-myc ODN 21-mer was used to study ODN cellular uptake in Rauscher erythroleukemia cells synchronized by either chemical methods or flow cytometry. ODN uptake was examined using subcellular fractionation and confocal fluorescence microscopy. Western blot analysis was used to measure ODN-mediated decreases in c-myc protein levels. Intracellular ODN distribution and extent of uptake was influenced by the phase of the cell cycle, but the mechanism of uptake was not. The relative activity of the antisense ODN was positively correlated to ODN distribution to the cytosol, but negatively correlated to total cellular uptake. Although ODN total cellular uptake is positively influenced by the cell cycle, retention of the ODN in the cytosol (presumably extra-vesicularly) appeared to be relevant in determining the activity of an antisense ODN. Novel methods to target cytosol-acting drugs to the cytoplasm may therefore be warrented.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号