首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2104篇
  免费   213篇
  国内免费   2篇
  2319篇
  2023年   14篇
  2022年   30篇
  2021年   32篇
  2020年   22篇
  2019年   21篇
  2018年   23篇
  2017年   22篇
  2016年   43篇
  2015年   98篇
  2014年   110篇
  2013年   130篇
  2012年   154篇
  2011年   158篇
  2010年   99篇
  2009年   79篇
  2008年   103篇
  2007年   88篇
  2006年   125篇
  2005年   92篇
  2004年   88篇
  2003年   74篇
  2002年   72篇
  2001年   61篇
  2000年   67篇
  1999年   55篇
  1998年   17篇
  1997年   20篇
  1996年   13篇
  1995年   13篇
  1994年   14篇
  1993年   12篇
  1992年   24篇
  1991年   32篇
  1990年   14篇
  1989年   23篇
  1988年   26篇
  1987年   19篇
  1986年   31篇
  1985年   26篇
  1984年   19篇
  1983年   16篇
  1982年   8篇
  1980年   10篇
  1979年   10篇
  1978年   15篇
  1976年   14篇
  1975年   15篇
  1973年   9篇
  1969年   6篇
  1966年   6篇
排序方式: 共有2319条查询结果,搜索用时 15 毫秒
11.
12.
Complement activation is an important step for triggering of acute inflammatory reactions. Soluble human recombinant complement receptor type 1 (sCR1) blocks complement activation by both classical and alternative pathways. In addition to glycogen-induced peritonitis, three models of complement-dependent acute inflammatory injury have been used to assess the protective effects of sCR1: lung and dermal injury after intraalveolar or intradermal deposition of IgG immune complexes; acute lung injury resulting from intravascular activation of complement after the i.v. injection of cobra venom factor; and acute skin and lung injury (at 4 h) after thermal trauma involving 25 to 30% total body surface area. Vascular injury was quantified by increases in vascular permeability, hemorrhage, neutrophil infiltration, and, as indicated, tissue water content. Intravenous infusion of sCR1 reduced lung and dermal vascular injury in all models studied. In glycogen-induced peritoneal exudates sCR1-reduced neutrophil accumulation by 79%. In animals undergoing IgG immune complex-induced alveolitis, sCR1 treatment reduced vascular permeability and hemorrhage by 72 and 71%, respectively, and tissue accumulation of neutrophils was reduced by 68%. After cobra venom factor injection, sCR1 reduced increases in lung vascular permeability by 67%, hemorrhage by 73%, and lung myeloperoxidase content by 55%. Four hours after thermal injury of skin, sCR1-treated animals demonstrated significant protection against lung injury; increases in vascular permeability and hemorrhage were reduced by 45 and 46%, respectively, and myeloperoxidase content was lowered by 39%. In thermal injury of the skin, sCR1 injection reduced dermal vascular permeability by 25% at 1 h (p = NS) and 44% at 4 h. Water content in skin biopsies was also decreased. There was a dose-response relationship between the amount of sCR1 infused and the extent of protection in each of the injury models. These data demonstrate that sCR1 offers significant protection against complement-dependent tissue injury in the animal models studied and that the protective effects are related to reduced neutrophil content.  相似文献   
13.
The effects of aminopyridines on ionic conductances of the squid giant axon membrane were examined using voltage clamp and internal perfusion techniques. 4-Aminopyridine (4-AP) reduced potassium currents, but had no effect upon transient sodium currents. The block of potassium channels by 4-AP was substantially less with (a) strong depolarization to positive membrane potentials, (b) increasing the duration of a given depolarizing step, and (c) increasing the frequency of step depolarizations. Experiments with high external potassium concentrations revealed that the effect of 4-AP was independent of the direction of potassium ion movement. Both 3- and 2-aminopyridine were indistinguishable from 4-AP except in potency. It is concluded that aminopyrimidines may be used as tools to block the potassium conductance in excitable membranes, but only within certain specific voltage and frequency limits.  相似文献   
14.
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect.  相似文献   
15.
16.
17.
18.

Background

The accumulation of visceral adipose tissue that occurs with normal aging is associated with increased cardiovascular risks. However, the clinical significance, biological effects, and related cardiometabolic derangements of body-site specific adiposity in a relatively healthy population have not been well characterized.

Materials and Methods

In this cross-sectional study, we consecutively enrolled 608 asymptomatic subjects (mean age: 47.3 years, 27% female) from 2050 subjects undergoing an annual health survey in Taiwan. We measured pericardial (PCF) and thoracic peri-aortic (TAT) adipose tissue volumes by 16-slice multi-detector computed tomography (MDCT) (Aquarius 3D Workstation, TeraRecon, San Mateo, CA, USA) and related these to clinical characteristics, body fat composition (Tanita 305 Corporation, Tokyo, Japan), coronary calcium score (CCS), serum insulin, high-sensitivity C-reactive protein (Hs-CRP) level and circulating leukocytes count. Metabolic risk was scored by Adult Treatment Panel III guidelines.

Results

TAT, PCF, and total body fat composition all increased with aging and higher metabolic scores (all p<0.05). Only TAT, however, was associated with higher circulating leukocyte counts (ß-coef.:0.24, p<0.05), serum insulin (ß-coef.:0.17, p<0.05) and high sensitivity C-reactive protein (ß-coef.:0.24, p<0.05). These relationships persisted after adjustment in multivariable models (all p<0.05). A TAT volume of 8.29 ml yielded the largest area under the receiver operating characteristic curve (AUROC: 0.79, 95%CI: 0.74–0.83) to identify metabolic syndrome. TAT but not PCF correlated with higher coronary calcium score after adjustment for clinical variables (all p<0.05).

Conclusion

In our study, we observe that age-related body-site specific accumulation of adipose tissue may have distinct biological effects. Compared to other adiposity measures, peri-aortic adiposity is more tightly associated with cardiometabolic risk profiles and subclinical atherosclerosis in a relatively healthy population.  相似文献   
19.
Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young’s modulus (Eeff) relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.  相似文献   
20.
Accumulating evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play important roles in several neurodegenerative disorders. Therefore, development of methods for microglial inhibition is considered an important strategy in the search for neuroprotective agents. Caffeic acid phenethyl ester (CAPE) is distributed wildly in nature, but rapid decomposition by esterase leads to its low bioavailability. In this study, we investigated the effects of KS370G, a novel caffeic acid phenylethyl amide, on microglial activation. KS370G significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with KS370G also induced heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS)-3 expression in the microglia. Furthermore, the anti-inflammatory effects of KS370G were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) translocated to the nucleus. Moreover, KS370G showed significant anti-neuroinflammatory effects on microglial activation in vivo and on motor behavior as well. The protective effect of KS370G was weakened by an AMPK inhibitor Compound C. This study focuses on the importance of key molecular determinants of inflammatory homeostasis, AMPK, HO-1, and SOCS-3, and their possible involvement in anti-neuroinflammatory responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号