首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1932篇
  免费   193篇
  2021年   18篇
  2020年   14篇
  2018年   19篇
  2017年   16篇
  2016年   32篇
  2015年   57篇
  2014年   55篇
  2013年   69篇
  2012年   100篇
  2011年   84篇
  2010年   46篇
  2009年   57篇
  2008年   81篇
  2007年   72篇
  2006年   83篇
  2005年   78篇
  2004年   55篇
  2003年   58篇
  2002年   89篇
  2001年   76篇
  2000年   80篇
  1999年   52篇
  1998年   23篇
  1997年   26篇
  1996年   20篇
  1995年   17篇
  1994年   21篇
  1993年   17篇
  1992年   51篇
  1991年   47篇
  1990年   40篇
  1989年   39篇
  1988年   39篇
  1987年   30篇
  1986年   28篇
  1985年   35篇
  1984年   26篇
  1983年   20篇
  1982年   19篇
  1981年   17篇
  1979年   27篇
  1978年   12篇
  1977年   24篇
  1976年   19篇
  1974年   14篇
  1973年   11篇
  1972年   18篇
  1971年   17篇
  1969年   21篇
  1967年   12篇
排序方式: 共有2125条查询结果,搜索用时 31 毫秒
161.
Glucose modifies the amino groups of proteins by a process of non-enzymatic glycation, leading to potentially deleterious effects on structure and function that have been implicated in the pathogenesis of diabetic complications. These changes are extremely complex and occur very slowly. We demonstrate here that hemoglobin and myoglobin are extremely susceptible to damage by glucose in vitro through a process that leads to complete destruction of the essential heme group. This process appears in addition to the expected formation of so-called advanced glycation end products (AGEs) on lysine and other side-chains. AGE formation is enhanced by the iron released. In contrast, the heme group is not destroyed during glycation of cytochrome c, where the sixth coordination position of the heme iron is not accessible to solvent ligands. Glycation leads to reduction of ferricytochrome c in this case. Since hydrogen peroxide is known to destroy heme, and the destruction observed during glycation of hemoglobin and myoglobin is sensitive to catalase, we propose that the degradation process is initiated by hydrogen peroxide formation. Damage may then occur through reaction with superoxide generated (a reductant of ferricytochrome c), or hydroxyl radicals, or with both.  相似文献   
162.
Glycobiology of neuromuscular disorders   总被引:7,自引:0,他引:7  
Martin PT  Freeze HH 《Glycobiology》2003,13(8):67R-75R
There has been a recent explosion in the identification of neuromuscular diseases caused by mutations in genes that affect carbohydrate metabolism or protein glycosylation. A number of these findings relate to defects in the glycosylation of alpha dystroglycan. Alpha dystroglycan is an essential component of the dystrophin-glycoprotein complex, and aberrant glycosylation of alpha dystroglycan is associated with multiple forms of muscular dystrophy in mice and humans. We review the evidence that defects in dystroglycan glycosylation cause muscular dystrophy. In addition, we review evidence that glycobiology is important in other disorders that affect muscle, including hereditary inclusion body myopathy type II and congenital disorders of glycosylation. Finally, we discuss the long-term potential of glycotherapies for muscle disorders.  相似文献   
163.
Staphylococcus aureus is the primary etiological agent of several human diseases. S. aureus has classically been considered an extracellular pathogen; however, recent evidence indicates that S. aureus invades and persists in non-professional phagocytes. Experiments demonstrate that actin microfilaments, microtubules, receptor-mediated endocytosis, and protein tyrosine kinases play important roles in the uptake of S. aureus. Fibronectin-binding proteins and beta-integrins are implicated as critical cell surface molecules associated with internalization of S. aureus by non-phagocytic cells. Following invasion of eukaryotic cells, S. aureus induces the release of cytokines that have the potential to exacerbate disease and induce apoptosis. Finally, S. aureus has the ability to persist inside host cells as small colony variants, a phenotype associated with persistent and recurrent infections.  相似文献   
164.
Epithelial cells maintained in culture medium containing low calcium proteolytically process laminin 5 (alpha3beta3gamma2) within the alpha3 and gamma2 chains (). Experiments were designed to identify the enzyme(s) responsible for the laminin 5 processing and the sites of proteolytic cleavage. To characterize the nature of laminin 5 processing, we determined the N-terminal amino acid sequences of the proteolytic fragments produced by the processing events. The results indicate that the first alpha3 chain cleavage (200-l65 kDa alpha3) occurs within subdomain G4 of the G domain. The second cleavage (l65-l45 kDa alpha3) occurs within the lIla domain, 11 residues N-terminal to the start of domain II. The gamma chain is cleaved within the second epidermal growth factor-like repeat of domain Ill. The sequence cleaved within the gamma2 chain matches the consensus sequence for the cleavage of type I, II, and III procollagens by bone morphogenetic protein-1 (BMP-1), also known as type I procollagen C-proteinase (). Recombinant BMP-1 cleaves gamma2 in vitro, both within intact laminin 5 and at the predicted site of a recombinant gamma2 short arm. alpha3 is also cleaved by BMP-1 in vitro, but the cleavage site is yet to be determined. These results show the laminin alpha3 and gamma2 chains to be substrates for BMP-1 in vitro. We speculate that gamma2 cleavage is required for formation of the laminin 5-6 complex and that this complex is directly involved in assembly of the interhemidesmosomal basement membrane. This further suggests that BMP-1 activity facilitates basement membrane assembly, but not hemidesmosome assembly, in the laminin 5-rich dermal-epidermal junction basement membrane in vivo.  相似文献   
165.
The diversity and population densities of facultative anaerobic bacteria with the capacity to hydrate oleic acid and linoleic acid in the rumen of sheep and dairy cows were determined. The screening of representative colonies, from rumen fluid plated aerobically on a range of agar media, revealed that sheep rumen fluid contained hydration-positive strains of Streptococcus, Staphylococcus, Enterococcus, Lactobacillus and Pediococcus, whereas cow rumen fluid contained hydration-positive strains of Streptococcus, Lactobacillus and Staphylococcus. Mean counts of facultative anaerobic bacteria in sheep and cattle rumen were log10 7.29 and log10 6.40, respectively, and were independent of diet. Approximately 56% of facultative anaerobic bacteria were able to hydrate oleic and/or linoleic acid in anaerobic broth culture. For both sheep and cows, the most numerous hydration-positive isolates were strains of Strep. bovis. The results, which are the first to show that pediococci have the capacity to hydrate unsaturated fatty acids, suggest that lactic acid bacteria are the major unsaturated fatty acid hydrating bacteria in the rumen.  相似文献   
166.
To determine the physiological roles of peroxisome proliferator-activated receptor beta (PPARbeta), null mice were constructed by targeted disruption of the ligand binding domain of the murine PPARbeta gene. Homozygous PPARbeta-null term fetuses were smaller than controls, and this phenotype persisted postnatally. Gonadal adipose stores were smaller, and constitutive mRNA levels of CD36 were higher, in PPARbeta-null mice than in controls. In the brain, myelination of the corpus callosum was altered in PPARbeta-null mice. PPARbeta was not required for induction of mRNAs involved in epidermal differentiation induced by O-tetradecanoylphorbol-13-acetate (TPA). The hyperplastic response observed in the epidermis after TPA application was significantly greater in the PPARbeta-null mice than in controls. Inflammation induced by TPA in the skin was lower in wild-type mice fed sulindac than in similarly treated PPARbeta-null mice. These results are the first to provide in vivo evidence of significant roles for PPARbeta in development, myelination of the corpus callosum, lipid metabolism, and epidermal cell proliferation.  相似文献   
167.
Previously we reported that ultralow concentrations of dynorphins (10(-16) to 10(-12) M) inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and proinflammatory cytokines in mouse glia without the participation of kappa-opioid receptors. In the current study using mouse cortical neuron-glia cocultures, we examined the possibility that inhibition of glia inflammatory response by dynorphins might be neuroprotective for neurons. LPS, in a concentration-dependent manner, markedly increased the release of lactate dehydrogenase (LDH), an indicator of cellular injury. Ultralow concentrations (10(-14) to 10(-12) M) of dynorphin (dyn) A-(1-8) significantly prevented the LPS-induced release of LDH, loss of neurons, and changes in cell morphology, in addition to inhibition of LPS-induced nitrite production. Meanwhile, ultralow concentrations (10(-15) to 10(-13) M) of des-[Tyr(1)]-dyn A-(2-17), a nonopioid peptide which does not bind to kappa-opioid receptors, exhibited the same inhibitory effect as dyn A-(1-17). These results suggest that dynorphins at ultralow concentrations are capable of reducing LPS-induced neuronal injury and these neuroprotective effects of dynorphins are not mediated by classical opioid receptors.  相似文献   
168.
Sak kinase gene structure and transcriptional regulation   总被引:4,自引:0,他引:4  
Hudson JW  Chen L  Fode C  Binkert C  Dennis JW 《Gene》2000,241(1):65-73
  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号