首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   21篇
  274篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   12篇
  2014年   17篇
  2013年   16篇
  2012年   18篇
  2011年   18篇
  2010年   12篇
  2009年   5篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   13篇
  2004年   6篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
71.
Rett syndrome (RTT), a neurodevelopmental disorder affecting mostly females, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Although the majority of girls with classic RTT have a random pattern of X-chromosome inactivation (XCI), nonbalanced patterns have been observed in patients carrying mutant MECP2 and, in some cases, account for variability of phenotypic manifestations. We have generated an RTT mouse model that recapitulates all major aspects of the human disease, but we found that females exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations. To evaluate whether XCI influences the phenotypic outcome of Mecp2 mutation in the mouse, we studied the pattern of XCI at the single-cell level in brains of heterozygous females. We found that XCI patterns were unbalanced, favoring expression of the wild-type allele, in most mutant females. It is notable that none of the animals had nonrandom XCI favoring the mutant allele. To explore why the XCI patterns favored expression of the wild-type allele, we studied primary neuronal cultures from Mecp2-mutant mice and found selective survival of neurons in which the wild-type X chromosome was active. Quantitative analysis indicated that fewer phenotypes are observed when a large percentage of neurons have the mutant X chromosome inactivated. The study of neuronal XCI patterns in a large number of female mice carrying a mutant Mecp2 allele highlights the importance of MeCP2 for neuronal viability. These findings also raise the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.  相似文献   
72.
Dopamine (DA) and glutamate neurotransmission is thought to be critical for psychostimulant drugs to induce immediate early genes (IEGs) in the caudate-putamen (CPu). We report here, however, that the ability of DA and glutamate NMDA receptor antagonists to attenuate amphetamine-evoked c-fos mRNA expression in the CPu depends on environmental context. When given in the home cage, amphetamine induced c-fos mRNA expression predominately in preprodynorphin and preprotachykinin mRNA-containing neurons (Dyn-SP+ cells) in the CPu. In this condition, all of the D1R, D2R and NMDAR antagonists tested dose-dependently decreased c-fos expression in Dyn-SP+ cells. When given in a novel environment, amphetamine induced c-fos mRNA in both Dyn-SP+ and preproenkephalin mRNA-containing neurons (Enk+ cells). In this condition, D1R and non-selective NMDAR antagonists dose-dependently decreased c-fos expression in Dyn-SP+ cells, but neither D2R nor NR2B-selective NMDAR antagonists had no effect. Furthermore, amphetamine-evoked c-fos expression in Enk+ cells was most sensitive to DAR and NMDAR antagonism; the lowest dose of every antagonist tested significantly decreased c-fos expression only in these cells. Finally, novelty-stress also induced c-fos expression in both Dyn-SP+ and Enk+ cells, and this was relatively resistant to all but D1R antagonists. We suggest that the mechanism(s) by which amphetamine evokes c-fos expression in the CPu varies depending on the stimulus (amphetamine vs. stress), the striatal cell population engaged (Dyn-SP+ vs. Enk+ cells), and environmental context (home vs. novel cage).  相似文献   
73.
We cloned a DNA fragment responsible for drug resistance from chromosome of Vibrio cholerae non-O1. Nucleotide sequence analysis of this fragment revealed the presence of a single open reading frame encoding a protein consisting of 445 amino acid residues. We designated the gene as vcrM. Hydropathy analysis of the deduced amino acid sequence of VcrM suggests the presence of 12 trans-membrane segments. A dendrogram showed that VcrM is a member of the DinF-subfamily within the MATE family of multidrug efflux pumps. Expression of the cloned vcrM gene in drug-hypersensitive Escherichia coli KAM32 cells made them resistant to acriflavine, 4', 6-diamidino-2-phenylindole, Hoechst 33342, rhodamine 6G, tetraphenylphosphonium chloride (TPPCl) and ethidium bromide. Efflux of acriflavine due to VcrM was dependent on Na+ or Li+. Moreover, Na+ efflux was observed with VcrM when TPPCl was added to Na+-loaded cells. Therefore, we conclude that VcrM is a Na+/drug antiporter-type multidrug efflux pump.  相似文献   
74.
Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.  相似文献   
75.
We had previously described the leucine-rich acidic nuclear protein (LANP) as a candidate mediator of toxicity in the polyglutamine disease, spinocerebellar ataxia type 1 (SCA1). This was based on the observation that LANP binds ataxin-1, the protein involved in this disease, in a glutamine repeat-dependent manner. Furthermore, LANP is expressed abundantly in purkinje cells, the primary site of ataxin-1 pathology. Here we focused our efforts on understanding the neuronal properties of LANP. In undifferentiated neuronal cells LANP is predominantly a nuclear protein, requiring a bona fide nuclear localization signal to be imported into the nucleus. LANP translocates from the nucleus to the cytoplasm during the process of neuritogenesis, interacts with the light chain of the microtubule-associated protein 1B (MAP1B), and modulates the effects of MAP1B on neurite extension. LANP thus could play a key role in neuronal development and/or neurodegeneration by its interactions with microtubule associated proteins.  相似文献   
76.
During embryonic development of the inner ear, the sensory primordium that gives rise to the organ of Corti from within the cochlear epithelium is patterned into a stereotyped array of inner and outer sensory hair cells separated from each other by non-sensory supporting cells. Math1, a close homolog of the Drosophila proneural gene atonal, has been found to be both necessary and sufficient for the production of hair cells in the mouse inner ear. Our results indicate that Math1 is not required to establish the postmitotic sensory primordium from which the cells of the organ of Corti arise, but instead is limited to a role in the selection and/or differentiation of sensory hair cells from within the established primordium. This is based on the observation that Math1 is only expressed after the appearance of a zone of non-proliferating cells that delineates the sensory primordium within the cochlear anlage. The expression of Math1 is limited to a subpopulation of cells within the sensory primordium that appear to differentiate exclusively into hair cells as the sensory epithelium matures and elongates through a process that probably involves radial intercalation of cells. Furthermore, mutation of Math1 does not affect the establishment of this postmitotic sensory primordium, even though the subsequent generation of hair cells is blocked in these mutants. Finally, in Math1 mutant embryos, a subpopulation of the cells within the sensory epithelium undergo apoptosis in a temporal gradient similar to the basal-to-apical gradient of hair cell differentiation that occurs in the cochlea of wild-type animals.  相似文献   
77.
The present study explored the short-term effects of dietary conjugated-linoleic acid (CLA) on liver lipid metabolism in starved/refed Otsuka Long Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (12 weeks old) were starved for 24 hours, then refed for 48 hours with either a CLA diet [7.5% CLA and 7.5% Safflower oil (SAF)] or a SAF control diet (15% SAF). The results demonstrated a 30% reduction of hepatic triglyceride (TG) concentration in the CLA group when compared to the control group. Liver cholesterol concentration was also 26% lower in the CLA fed rats. The activity of mitochondrial carnitine palmitoyltransferase, the rate-limiting enzyme of fatty acid oxidation, was moderately elevated by 1.2-fold in the livers of the CLA group when compared to the control. In contrast, phosphatidate phosphohydrolase, the rate-limiting enzyme for TG synthesis, was found to be 20% lower in the livers of the CLA-fed rats. Therefore, dietary CLA evidently lowers liver lipid concentrations through a reduced TG synthesis and enhanced fatty acid oxidation in starved/refed OLETF rats.  相似文献   
78.
We report a case of a patient with right pleural effusion who, during video-assisted thoracoscopy for biopsy and diagnosis, developed a sudden rise in end-tidal carbon dioxide (EtCO2) after a small tear of the lung tissue. The purpose of this case report is to highlight this rare complication and to discuss possible alternative differential diagnosis.  相似文献   
79.
80.
In an acidic buffered solution, erythrosine B can react with amiodarone to form an association complex, which not only generates great enhancement in resonance Rayleigh scattering (RRS) spectrum of erythrosine B at 346.5 nm but also results in quenching of fluorescence spectra of erythrosine B at λemission = 550.4 nm/λexcitation = 528.5 nm. In addition, the formed erythrosine B–amiodarone complex produces a new absorbance peak at 555 nm. The spectral characteristics of the RRS, absorbance, and fluorescence spectra, as well as the optimum analytical conditions, were studied and investigated. As a result, new spectroscopic methods were developed to determine amiodarone by utilizing erythrosine B as a probe. Moreover, the ICH guidelines were used to validate the developed RRS, photometric, and fluorimetric methods. The enhancements in the absorbance and the RRS intensity and the decrease in the fluorescence intensity of the used probe were proportional to the concentration of amiodarone in ranges of 2.5–20.0, 0.2–2.5, and 0.25–1.75 μg/mL, respectively. Furthermore, limit of detection values were 0.52 ng/mL for the spectrophotometric method, 0.051 μg/mL for the RRS method, and 0.075 μg/mL for the fluorimetric method. Moreover, with good recoveries, the developed spectroscopic procedures were applied to analyze amiodarone in its commercial tablets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号