首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   21篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   12篇
  2014年   17篇
  2013年   16篇
  2012年   18篇
  2011年   18篇
  2010年   12篇
  2009年   5篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   13篇
  2004年   6篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有274条查询结果,搜索用时 328 毫秒
61.
Amphetamine-, cocaine-, and morphine-induced c-fos expression patterns were examined following an injection protocol that has previously been shown to produce behavioral sensitization and enhanced dopamine release in the striatal complex. Drug-specific c-fos patterns were observed in both acute and sensitization injection paradigms. A sensitization pretreatment schedule did, however, alter the c-fos expression patterns induced by all the drugs in the caudate putamen, nucleus accumbens, and the cerebral cortex. In some striatal and cortical regions, there was an increase or recruitment of cells expressing c-fos whereas in others there was an apparent decrease or inhibition. The somatosensory cortex was one area where pretreatment with all three drugs increased c-fos expression. The results suggest that the neuronal networks that are modulated by systemic drug injections in the sensitized animal differ from those affected by the initial drug exposure; areas of overlap may indicate common ‘sensitization’ circuits. Special issue dedicated to Dr. Eric J. Simon.  相似文献   
62.
63.
Fabricating drug particles for therapeutic delivery and imaging presents important challenges in the design of the particle surfaces. Drug nanoparticle surfaces are currently functionalized with site-specific targeting ligands, biocompatible polymers, or fluorophore-polymer conjugates for specific imaging. However, if these functionalizations were to be synthesized on the drug carrier in localized, nanoscale regions on the particle surface, new schemes of drug delivery could be realized. Here we describe the use of our particle lithography technique that enables the synthesis of individual colloidal carrier assemblies that can be imaged and targeted to integrin-expressing cells. We show localized adhesion specificity for cells expressing the target integrin followed by receptor-mediated endocytosis. With the addition of localized delivery by adding drug nanoparticles to a specific region on the particle surface, our colloidal carrier assemblies have the potential to target, deliver therapeutic agents to, sense, and image diseased endothelium.  相似文献   
64.
65.
CHIP (C terminus of Hsc-70 interacting protein) is an E3 ligase that links the protein folding machinery with the ubiquitin-proteasome system and has been implicated in disorders characterized by protein misfolding and aggregation. Here we investigate the role of CHIP in protecting from ataxin-1-induced neurodegeneration. Ataxin-1 is a polyglutamine protein whose expansion causes spinocerebellar ataxia type-1 (SCA1) and triggers the formation of nuclear inclusions (NIs). We find that CHIP and ataxin-1 proteins directly interact and co-localize in NIs both in cell culture and SCA1 postmortem neurons. CHIP promotes ubiquitination of expanded ataxin-1 both in vitro and in cell culture. The Hsp70 chaperone increases CHIP-mediated ubiquitination of ataxin-1 in vitro, and the tetratricopeptide repeat domain, which mediates CHIP interactions with chaperones, is required for ataxin-1 ubitiquination in cell culture. Interestingly, CHIP also interacts with and ubiquitinates unexpanded ataxin-1. Overexpression of CHIP in a Drosophila model of SCA1 decreases the protein steady-state levels of both expanded and unexpanded ataxin-1 and suppresses their toxicity. Finally we investigate the ability of CHIP to protect against toxicity caused by expanded polyglutamine tracts in different protein contexts. We find that CHIP is not effective in suppressing the toxicity caused by a bare 127Q tract with only a short hemagglutinin tag, but it is very efficient in suppressing toxicity caused by a 128Q tract in the context of an N-terminal huntingtin backbone. These data underscore the importance of the protein framework for modulating the effects of polyglutamine-induced neurodegeneration.  相似文献   
66.
67.
Protein kinases of the phosphatidylinositol 3-kinase-like kinase family, originally known to act in maintaining genomic integrity via DNA repair pathways, have been shown to also function in telomere maintenance. Here we focus on the functional role of DNA damage-induced phosphorylation of the essential mammalian telomeric DNA binding protein TRF2, which coordinates the assembly of the proteinaceous cap to disguise the chromosome end from being recognized as a double-stand break (DSB). Previous results suggested a link between the transient induction of human TRF2 phosphorylation at threonine 188 (T188) by the ataxia telangiectasia mutated protein kinase (ATM) and the DNA damage response. Here, we report evidence that X-ray-induced phosphorylation of TRF2 at T188 plays a role in the fast pathway of DNA DSB repair. These results connect the highly transient induction of human TRF2 phosphorylation to the DNA damage response machinery. Thus, we find that a protein known to function in telomere maintenance, TRF2, also plays a functional role in DNA DSB repair.Telomeres act as protective caps to disguise the chromosome end from being recognized as a DNA double-strand break (DSB) and play other important roles in maintaining genomic integrity (2, 21, 26). Telomere capping dysfunction resulting in genomic instability is likely a major pathway leading to human cancers and other age-related diseases (8, 27).An increasing number of proteins known to play important roles in DNA repair have also been found to be critical for telomere maintenance (6). Specifically, phosphatidylinositol (PI) 3-kinase-like kinase family members, such as ataxia telangiectasia mutated protein kinase (ATM) and the DNA-dependent protein kinase catalytic subunit in mammals, originally known to act in maintaining genomic stability via DNA repair pathways, have been shown to be important in telomere maintenance (1, 4, 7, 9, 10, 16, 25). Previous reports indicate that ATM is required for the DNA damage-induced phosphorylation of two major telomere-associated proteins in mammals, human TRF1 and TRF2 (16, 28). The specific molecular roles played by the DNA damage-induced phosphorylation of TRF1 and TRF2 in telomere maintenance and/or DNA repair are unclear and under active investigation. We previously reported that upon DNA damage, human TRF2 was rapidly and transiently phosphorylated at threonine 188 (T188) (28). Here, we report that X-ray-induced phosphorylation of human TRF2 at T188 plays a functional role in the fast pathway of DNA DSB repair.  相似文献   
68.
69.
The UL24 family of proteins is widely conserved among herpesviruses. We demonstrated previously that UL24 of herpes simplex virus 1 (HSV-1) is important for the dispersal of nucleolin from nucleolar foci throughout the nuclei of infected cells. Furthermore, the N-terminal portion of UL24 localizes to nuclei and can disperse nucleolin in the absence of any other viral proteins. In this study, we tested the hypothesis that highly conserved residues in UL24 are important for the ability of the protein to modify the nuclear distribution of nucleolin. We constructed a panel of substitution mutations in UL24 and tested their effects on nucleolin staining patterns. We found that modified UL24 proteins exhibited a range of subcellular distributions. Mutations associated with a wild-type localization pattern for UL24 correlated with high levels of nucleolin dispersal. Interestingly, mutations targeting two regions, namely, within the first homology domain and overlapping or near the previously identified PD-(D/E)XK endonuclease motif, caused the most altered UL24 localization pattern and the most drastic reduction in its ability to disperse nucleolin. Viral mutants corresponding to the substitutions G121A and E99A/K101A both exhibited a syncytial plaque phenotype at 39°C. vUL24-E99A/K101A replicated to lower titers than did vUL24-G121A or KOS. Furthermore, the E99A/K101A mutation caused the greatest impairment of HSV-1-induced dispersal of nucleolin. Our results identified residues in UL24 that are critical for the ability of UL24 to alter nucleoli and further support the notion that the endonuclease motif is important for the function of UL24 during infection.The UL24 protein is conserved throughout the Herpesviridae family, and to the best of our knowledge, a UL24 homolog has been identified in all Herpesvirales genomes sequenced to date with the exception of the channel catfish virus (9, 10, 19). UL24 of herpes simplex virus 1 (HSV-1) is required for efficient virus replication both in vitro and in vivo and for reactivation from latency in a mouse model of ocular infection (18). UL24 is one of the few HSV-1 genes, along with gB, gK, and UL20, in which mutations have been identified that cause the formation of syncytial plaques (2, 7, 34, 36, 39). The UL24-associated syncytial phenotype is only partially penetrant at 37°C but is fully penetrant at 39°C. Indications are that gK and UL20 have an inhibitory effect on the formation of syncytia (1), while certain mutations in gB entrain an uncontrolled fusogenic activity (11, 13, 15).UL24 is a highly basic protein of 269 amino acids that is expressed with leaky-late kinetics (31). Five homology domains (HDs), which consist of stretches of amino acids with a high percentage of identity between homologs, are present in the UL24 open reading frame (ORF) (19). In addition, a PD-(D/E)XK endonuclease motif has been identified that falls within the HDs (20); however, a role for this motif has yet to be demonstrated. In infected cells, UL24 is detected in the nucleus and the cytoplasm and transiently localizes to nucleoli (23). In the absence of other viral proteins, UL24 accumulates in the Golgi apparatus and in the nucleus, where it usually exhibits a diffuse staining pattern, but in a minority of cells it is detected in nucleoli (3).During infection, the formation of the viral replication compartments in the nucleus and the action of several viral proteins result in a remodeling of the nucleus. Chromatin is marginalized (29, 40), promyelocytic leukemia bodies are dispersed (26, 27), and the nuclear lamina is disrupted (33, 37). HSV-1 infection also affects the nucleolus, a prominent nuclear substructure implicated in the synthesis of rRNA, cell cycle regulation, and nucleocytoplasmic shuttling (5). Nucleoli become elongated following infection, and the synthesis of mature rRNA is reduced (4, 38, 42). Several HSV-1 proteins have been shown to localize to, or associate with, the nucleolus (12). The viral protein VP22 associates with the nucleolus and with dispersed nucleolin in HSV-1-infected cells (22), and RL1, US11, and ICP0 have also been shown to localize to nucleoli (24, 30, 35). Previously we showed that nucleolin is dispersed throughout the nucleus upon HSV-1 infection and that UL24 is involved in this nuclear modification (23). We further found that the N-terminal portion of UL24 is sufficient to induce the redistribution of nucleolin in the absence of other viral proteins (3).In this study, we sought to test the hypothesis that the endonuclease motif, which is made up of some of the most highly conserved residues in UL24, is important for the dispersal of nucleolin. A panel of substitution mutations in UL24 was generated, and the impact on the function of UL24 was assessed.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号