首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   21篇
  2024年   3篇
  2023年   3篇
  2022年   8篇
  2021年   12篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   12篇
  2014年   17篇
  2013年   16篇
  2012年   18篇
  2011年   18篇
  2010年   12篇
  2009年   5篇
  2008年   9篇
  2007年   14篇
  2006年   11篇
  2005年   13篇
  2004年   6篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有274条查询结果,搜索用时 250 毫秒
11.
Extremophiles - Microbes can be found in hypersaline environments forming diverse populations with complex ecological interactions. Microbes in such environments were found to be involved in the...  相似文献   
12.
The BRCA1 gene is located on the human chromosome 17q21.31 and plays important role in biological processes. The aminoacyl-tRNA synthetases (AARS) are a family of heterogenous enzymes responsible protein synthesis and whose secondary functions include a role in autoimmune myositis. Our findings reveal that the compositional constraint and the preference of more A/T –ending codons determine the codon usage patterns in BRCA1 gene while more G/C-ending codons influence the codon usage pattern of AARS gene among mammals. The codon usage bias in BRCA1 and AARS genes is low. The codon CGC encoding arginine amino acid and the codon TTA encoding leucine were uniformly distributed in BRCA1 and AARS genes, respectively in mammals including human. Natural selection might have played a major role while mutation pressure might have played a minor role in shaping the codon usage pattern of BRCA1 and AARS genes.  相似文献   
13.
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.  相似文献   
14.
The diversity of toxigenic V. cholerae O1 in the aquatic environment of Bangladesh is not known. A total of 18 environmental and 18 clinical strains of toxigenic V. cholerae O1 were isolated simultaneously from four different geographical areas and tested for variation by the pulsed-field gel electrophoresis method. Environmental strains showed diversified profiles and one of the profiles was common to some environmental strains and most clinical strains. It appears that one clone has an advantage over others to cause disease. These findings suggest that the study of the molecular ecology of V. cholerae O1 in relation to its environmental reservoir is important in identifying virulent strains that cause disease.  相似文献   
15.
A single nicotine exposure increases dopamine levels in the mesolimbic reward system for hours, but nicotine concentrations experienced by smokers desensitize nAChRs on dopamine neurons in seconds to minutes. Here, we show that persistent modulation of both GABAergic and glutamatergic synaptic transmission by nicotine can contribute to the sustained increase in dopamine neuron excitability. Nicotine enhances GABAergic transmission transiently, which is followed by a persistent depression of these inhibitory inputs due to nAChR desensitization. Simultaneously, nicotine enhances glutamatergic transmission through nAChRs that desensitize less than those on GABA neurons. The net effect is a shift toward excitation of the dopamine reward system. These results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.  相似文献   
16.
Cbfa1 is a critical regulator of cell differentiation expressed only in the osteochondrogenic lineage. To define the molecular basis of this cell-specific expression we analyzed the murine Cbfa1 promoter. Here we show that the first 976 bp of this promoter are specifically active in osteoblastic cells. Within this region DNase I footprinting delineated a 40-bp area (CE1) protected differently by nuclear extracts from osteoblastic cells and from non-osteoblastic cells. When multimerized, CE1 conferred an osteoblast-specific activity to a heterologous promoter in DNA transfection experiments; this enhancing ability was conserved between mouse, rat, and human CE1 present in the respective Cbfa1 promoters. CE1 site-specific mutagenesis determined that it binds NF1- and AP1-like activities. Further analyses revealed that the NF1 site acts as a repressor in non-osteoblastic cells due to the binding of NF1-A, a NF1 isoform not expressed in osteoblastic cells. In contrast, the AP1 site mediates an osteoblast-specific activation caused by the preferential binding of FosB to CE1 in osteoblastic cells. In summary, this study identified an osteoblast-specific enhancer in the Cbfa1 promoter whose activity is achieved by the combination of an inhibitory and an activatory mechanism.  相似文献   
17.
A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.  相似文献   
18.
Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号