首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   23篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   8篇
  2007年   16篇
  2006年   6篇
  2005年   12篇
  2004年   15篇
  2003年   8篇
  2002年   7篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   10篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   7篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1972年   2篇
  1970年   1篇
  1962年   1篇
  1923年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
141.
142.
Jensen  RB  Skriver  K  Jespersen  HM 《Plant molecular biology》1999,40(4):745-745
Plant Molecular Biology -  相似文献   
143.
Electron beam irradiations of aqueous solutions containing 15-30 mg/L of nitrobenzene at 60 kGy dose removed 78% of the contaminant. Three mononitrophenols were detected as by-products of electron beam treatment of nitrobenzene. A mixed culture enriched on a mixture of 2-, 3-, and 4-nitrophenol degraded both the residual nitrobenzene and the nitrophenol products. Percentage removal of nitrobenzene increased with increasing electron beam dose. This observation led to the conceptual design of a two-stage electron beam microbial process for degradation of nitrobenzene. Three groups of pure isolates were characterized from the mixed culture based on their abilities to grow on cor- responding nitrophenol substrates: Group A, 2NP(-)3NP(-)4NP(+); Group B, 2NP(+)3NP(+)4NP(-); and Group C, 2NP(-)3NP(+)4NP(-). Bacteria that grew on 3-NP transformed nitrobenzene into ammonia in the electron beam-treated nitrobenzene samples.  相似文献   
144.
A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3β-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3β-OH group of ergosterol (Erg), yielding ergosteryl-3β-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3β-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3β-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.  相似文献   
145.
146.
147.
148.
Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales.  相似文献   
149.
Shallow-marine Kimmeridgian (Late Jurassic) deposits in the Lower Saxony Basin (LSB) composed of alternating limestone, marl and claystone attract great palaeontological interest due to their rich invertebrate and vertebrate assemblages. Unfortunately, the absence of open-marine marker fossils and numerous sedimentary gaps in combination with lateral facies changes hamper the precise stratigraphic correlation of these strata on both a local and global scale. Here, an integrated approach combining carbonate microfacies analysis, ostracod biostratigraphy and high-resolution sequence stratigraphy is applied to two Kimmeridgian sections (Langenberg and Bisperode, 60 km apart) in the southeastern LSB. High-resolution carbonate microfacies analysis enables the definition of 19 microfacies types and seven microfacies associations, which can be arranged into facies belts along a carbonate ramp. Vertical microfacies, bed thickness and diagnostic surfaces define stacking patterns that are interpreted as small-, medium- and large-scale sequences. The ostracod biostratigraphic framework established in this study provides the required stratigraphic control. Correlation of the two studied sections reveals a more proximal setting for Bisperode than Langenberg and an overall shallowing-up trend from mid-ramp to proximal inner ramp developed in both sections. Furthermore, the majority of the medium-scale sequence boundaries defined in this study can be found in similar biostratigraphic positions in other European basins. Synsedimentary tectonics combined with high sediment accumulation rates can be identified as important controlling factors for the distribution and composition of the Kimmeridgian deposits in the LSB based on detailed correlation on both a regional and super-regional scale.  相似文献   
150.
Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号