首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   109篇
  2021年   14篇
  2019年   9篇
  2018年   6篇
  2017年   11篇
  2016年   18篇
  2015年   33篇
  2014年   25篇
  2013年   40篇
  2012年   48篇
  2011年   47篇
  2010年   40篇
  2009年   39篇
  2008年   54篇
  2007年   53篇
  2006年   34篇
  2005年   46篇
  2004年   28篇
  2003年   31篇
  2002年   41篇
  2001年   35篇
  2000年   23篇
  1999年   25篇
  1998年   13篇
  1997年   14篇
  1995年   9篇
  1994年   17篇
  1993年   6篇
  1992年   18篇
  1991年   25篇
  1990年   17篇
  1989年   28篇
  1988年   22篇
  1987年   18篇
  1986年   13篇
  1985年   21篇
  1984年   20篇
  1983年   19篇
  1982年   15篇
  1981年   15篇
  1980年   15篇
  1979年   17篇
  1978年   7篇
  1977年   10篇
  1976年   5篇
  1975年   10篇
  1972年   7篇
  1971年   10篇
  1968年   5篇
  1967年   5篇
  1965年   5篇
排序方式: 共有1124条查询结果,搜索用时 218 毫秒
191.
Connexin43 (Cx43) is a gap junction protein that forms multimeric channels that enable intercellular communication through the direct transfer of signals and metabolites. Although most multimeric protein complexes form in the endoplasmic reticulum (ER), Cx43 seems to exit from the ER as monomers and subsequently oligomerizes in the Golgi complex. This suggests that one or more protein chaperones inhibit premature Cx43 oligomerization in the ER. Here, we provide evidence that an ER-localized, 29-kDa thioredoxin-family protein (ERp29) regulates Cx43 trafficking and function. Interfering with ERp29 function destabilized monomeric Cx43 oligomerization in the ER, caused increased Cx43 accumulation in the Golgi apparatus, reduced transport of Cx43 to the plasma membrane, and inhibited gap junctional communication. ERp29 also formed a specific complex with monomeric Cx43. Together, this supports a new role for ERp29 as a chaperone that helps stabilize monomeric Cx43 to enable oligomerization to occur in the Golgi apparatus.  相似文献   
192.
Previous research has demonstrated that great ape and macaque males achieve large canine crown sizes primarily through extended canine growth periods. Recent work has suggested, however, that platyrrhine males may achieve larger canine sizes by accelerating rather than prolonging growth. This study tested the hypothesis that the ontogenetic pathway leading to canine sexual dimorphism in catarrhines differs from that of platyrrhines. To test this hypothesis, males and females of several catarrhine genera (Hylobates, Papio, Macaca, Cercopithecus, and Cercocebus) and three platyrrhine genera (Cebus, Ateles, and Callicebus) were compared in the number and spacing of perikymata (enamel growth increments) on their canine crowns. In addition, perikymata periodicities (the number of days of growth perikymata represent) were determined for five genera (Hylobates, Papio, Macaca, Cebus, and Ateles) using previously published as well as original data gathered for this study. The central findings are as follows: 1) males have more perikymata than females for seven of eight genera (in five of the seven, the differences are statistically significant); 2) in general, the greater the degree of sexual dimorphism, the greater the sex difference in male and female perikymata numbers; 3) there is no evidence of a systematic sex difference in primate periodicities; and 4) there is some evidence that sex differences in enamel formation rates may make a minor contribution to canine sexual dimorphism in Papio and Cercopithecus. These findings strongly suggest that in both catarrhines and platyrrhines prolongation of male canine growth is the primary mechanism by which canine crown sexual dimorphism is achieved. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
193.
An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.  相似文献   
194.
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed exclusively in skeletal muscle, where it is required for formation of the neuromuscular junction. MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. Here, we report the crystal structure of the agrin-responsive first and second immunoglobulin-like domains (Ig1 and Ig2) of the MuSK ectodomain at 2.2 A resolution. The structure reveals that MuSK Ig1 and Ig2 are Ig-like domains of the I-set subfamily, which are configured in a linear, semi-rigid arrangement. In addition to the canonical internal disulfide bridge, Ig1 contains a second, solvent-exposed disulfide bridge, which our biochemical data indicate is critical for proper folding of Ig1 and processing of MuSK. Two Ig1-2 molecules form a non-crystallographic dimer that is mediated by a unique hydrophobic patch on the surface of Ig1. Biochemical analyses of MuSK mutants introduced into MuSK(-/-) myotubes demonstrate that residues in this hydrophobic patch are critical for agrin-induced MuSK activation.  相似文献   
195.
Background Baboons are useful animal models for biomedical research, but the natural pathology of the baboon is not as well defined as other non‐human primates. Methods A computer search for all morphologic diagnoses from baboon necropsies at the Southwest National Primate Research Center was performed and included all the natural deaths and animals euthanized for natural causes. Results A total of 10,883 macroscopic or microscopic morphologic diagnoses in 4297 baboons were documented and are presented by total incidence, relative incidence by sex and age‐group, and mean age of occurrence. The most common diagnoses in descending order of occurrence were hemorrhage, stillborn, amyloidosis, colitis, spondylosis, and pneumonia. The systems with the most diagnoses were the digestive, urogenital, musculoskeletal, and respiratory. Conclusion This extensive evaluation of the natural pathology of the baboon should be an invaluable biomedical research resource.  相似文献   
196.
High resolution LC/MS-MS and LC/APPI-MS methods have been established for the quantitation of flux in the turnover of cholesterol and cholesterol ester. Attention was directed toward quantifying the monoisotopic mass (M0) and that of the singly deuterated labeled (M+1) isotope. A good degree of isotopic dynamic range has been achieved by LC/MS-MS ranging from 3-4 orders of magnitude. Correlation between the linearity of GC/MS and LC atmospheric pressure photoionization (APPI)-MS are complimentary (r2 = 0.9409). To prove the viability of this particular approach, male C57Bl/6 mice on either a high carbohydrate (HC) or a high fat (HF) diet were treated with 2H2O for 96 h. Gene expression analysis showed an increase in the activity of stearoyl-CoA desaturase (Scd1) in the HC diet up to 69-fold (P < 0.0008) compared with the HF diet. This result was supported by the quantitative flux measurement of the isotopic incorporation of 2H into the respective cholesterol and cholesterol ester (CE) pools. We concluded that it is possible to readily obtain static and dynamic measurement of cholesterol and CEs in vivo by coupling novel LC/MS methods with stable isotope-based protocols.  相似文献   
197.
The advantages of using (2)H(2)O to quantify cholesterol synthesis include i) homogeneous precursor labeling, ii) incorporation of (2)H via multiple pathways, and iii) the ability to perform long-term studies in free-living subjects. However, there are two concerns. First, the t(1/2) of tracer in body water presents a challenge when there is a need to acutely replicate measurements in the same subject. Second, assumptions are made regarding the number of hydrogens (n) that are incorporated during de novo synthesis. Our primary objective was to determine whether a step-based approach could be used to repeatedly study cholesterol synthesis a subject. We observed comparable changes in the (2)H-labeling of plasma water and total plasma cholesterol in African-Green monkeys that received five oral doses of (2)H(2)O, each dose separated by one week. Similar rates of cholesterol synthesis were estimated when comparing data in the group over the different weeks, but better reproducibility was observed when comparing replicate determinations of cholesterol synthesis in the same nonhuman primate during the respective dosing periods. Our secondary objective was to determine whether n depends on nutritional status in vivo; we observed n of ~25 and ~27 in mice fed a high-carbohydrate (HC) versus carbohydrate-free (CF) diet, respectively. We conclude that it is possible to acutely repeat studies of cholesterol synthesis using (2)H(2)O and that n is relatively constant.  相似文献   
198.
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%-50% for over 2 weeks, despite its relatively short terminal half-life (t(1/2) = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.  相似文献   
199.
Neuromuscular synapse formation depends upon coordinated interactions between motor neurons and muscle fibers, leading to the formation of a highly specialized postsynaptic membrane and a highly differentiated nerve terminal. Synapse formation begins as motor axons approach muscles that are prepatterned in the prospective synaptic region in a manner that depends upon Lrp4, a member of the LDL receptor family, and muscle-specific kinase (MuSK), a receptor tyrosine kinase. Motor axons supply Agrin, which binds Lrp4 and stimulates further MuSK phosphorylation, stabilizing nascent synapses. How Agrin binds Lrp4 and stimulates MuSK kinase activity is poorly understood. Here, we demonstrate that Agrin binds to the N-terminal region of Lrp4, including a subset of the LDLa repeats and the first of four β-propeller domains, which promotes association between Lrp4 and MuSK and stimulates MuSK kinase activity. In addition, we show that Agrin stimulates the formation of a functional complex between Lrp4 and MuSK on the surface of myotubes in the absence of the transmembrane and intracellular domains of Lrp4. Further, we demonstrate that the first Ig-like domain in MuSK, which shares homology with the NGF-binding region in Tropomyosin Receptor Kinase (TrKA), is required for MuSK to bind Lrp4. These findings suggest that Lrp4 is a cis-acting ligand for MuSK, whereas Agrin functions as an allosteric and paracrine regulator to promote association between Lrp4 and MuSK.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号