首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11327篇
  免费   863篇
  国内免费   539篇
  2024年   12篇
  2023年   99篇
  2022年   242篇
  2021年   441篇
  2020年   326篇
  2019年   399篇
  2018年   445篇
  2017年   353篇
  2016年   480篇
  2015年   707篇
  2014年   756篇
  2013年   905篇
  2012年   1067篇
  2011年   931篇
  2010年   546篇
  2009年   507篇
  2008年   592篇
  2007年   519篇
  2006年   442篇
  2005年   386篇
  2004年   356篇
  2003年   294篇
  2002年   253篇
  2001年   201篇
  2000年   187篇
  1999年   169篇
  1998年   86篇
  1997年   97篇
  1996年   92篇
  1995年   76篇
  1994年   72篇
  1993年   72篇
  1992年   89篇
  1991年   87篇
  1990年   66篇
  1989年   53篇
  1988年   47篇
  1987年   48篇
  1986年   36篇
  1985年   39篇
  1984年   22篇
  1983年   21篇
  1982年   12篇
  1981年   12篇
  1979年   11篇
  1978年   15篇
  1975年   7篇
  1974年   7篇
  1972年   12篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
It had been known for decades that primordial follicles in mammalian ovaries are assembled with definite numbers and represent the ovarian reserve throughout the reproductive life. Intra-oocyte PI3K/mTOR pathways have been indicated to play a central role on the activation of primordial follicles. Genetic modified mouse models with chronic activation of PI3K/mTOR signals in primordial oocytes showed premature activation of all primordial follicles and eventually their exhaustion. On the other hand, this may suggest that, unlike chronic activation of PI3K/mTOR, its acute activation in infertility would activate primordial follicles, permitting fertility during the treatment. Previously, PI3K stimulators were reported as a temporary measure to accelerate primordial follicle activation and follicular development in both mouse and human, and were applied in the treatment of infertility in premature ovarian failure (POF) patients. To address whether mTOR stimulators could play similar role in the process, we transiently treated neonatal and aged mouse ovaries with mTOR stimulators-phosphatidic acid (PA) and propranolol. Our results demonstrated the stimulators increased activation of primordial follicles and the production of progeny. Human ovarian cortex cubes were also treated with mTOR or/and PI3K stimulators in vitro. When they were used separately, both of them showed similar promotive effects on primordial follicles. Surprisingly, after joint-treatment with the 2 kinds of stimulators together, synergistic effects on follicular development were observed. Based on increased efficiency of follicular activation in humans, here we propose in vitro transient treatment with mTOR and PI3K stimulators as an optimized protocol for the application in different clinical conditions with limited follicle reserve.  相似文献   
992.
The mammary gland is composed of two major cellular compartments: a highly dynamic epithelium that undergoes cycles of proliferation, differentiation and apoptosis in response to local and endocrine signals and the underlying stroma comprised of fibroblasts, endothelial cells and adipocytes, which collectively form the mammary fat pad. Breast cancer originates from subversions of normal growth regulatory pathways in mammary epithelial cells due to genetic mutations and epigenetic modifications in tumor suppressors, oncogenes and DNA repair genes. Diet is considered a highly modifiable determinant of breast cancer risk; thus, considerable efforts are focused on understanding how certain dietary factors may promote resistance of mammary epithelial cells to growth dysregulation. The recent indications that stromal cells contribute to the maintenance of the mammary epithelial ‘niche’ and the increasing appreciation for adipose tissue as an endocrine organ with a complex secretome have led to the novel paradigm that the mammary stromal compartment is itself a relevant target of bioactive dietary factors. In this review, we address the potential influence of dietary factors on mammary epithelial-stromal bidirectional signaling to provide mechanistic insights into how dietary factors may promote early mammary epithelial differentiation to decrease adult breast cancer risk.  相似文献   
993.
994.
This paper describes highly stable enzyme precipitate coatings (EPCs) on electrospun polymer nanofibers and carbon nanotubes (CNTs), and their potential applications in the development of highly sensitive biosensors and high-powered biofuel cells. EPCs of glucose oxidase (GOx) were prepared by precipitating GOx molecules in the presence of ammonium sulfate, then cross-linking the precipitated GOx aggregates on covalently attached enzyme molecules on the surface of nanomaterials. EPCs-GOx not only improved enzyme loading, but also retained high enzyme stability. For example, EPC-GOx on CNTs showed a 50 times higher activity per unit weight of CNTs than the conventional approach of covalent attachment, and its initial activity was maintained with negligible loss for 200 days. EPC-GOx on CNTs was entrapped by Nafion to prepare enzyme electrodes for glucose sensors and biofuel cells. The EPC-GOx electrode showed a higher sensitivity and a lower detection limit than an electrode prepared with covalently attached GOx (CA-GOx). The CA-GOx electrode showed an 80% drop in sensitivity after thermal treatment at 50°C for 4 h, while the EPC-GOx electrode maintained its high sensitivity with negligible decrease under the same conditions. The use of EPC-GOx as the anode of a biofuel cell improved the power density, which was also stable even after thermal treatment of the enzyme anode at 50°C. The excellent stability of the EPC-GOx electrode together with its high current output create new potential for the practical applications of enzyme-based glucose sensors and biofuel cells.  相似文献   
995.
Interest in using nanoporous materials for sensing applications has increased. The present study reports a method of preparing well-ordered nanoporous gold arrays using a porous silicon (PSi) template. Gold nanolayer could be electrodeposited on the surface of the PSi template at low electrolysis currents in low concentration of chloroauric acid (HAuCl4) solution. Surface morphology characterizations and optical measurements revealed that a PSi-templated nanoporous gold (Au–PSi) array well replicated the nanoporous structure and retained the optical properties of PSi. Fourier transform reflectometric interference spectra showed that a characteristic blue-shifted effective optical thickness (EOT) was observed due to the low refractive index of the gold film. An optical DNA biosensor was then fabricated via the self-assembly of single-stranded DNA (ssDNA) with a specific sequence on the surface of Au–PSi. The attachment of ssDNA and its hybridization with target oligonucleotides (ODNs) persistently caused the blue shift of the EOT. Consequently, a relationship between the EOT shift and the ODN concentration was established. The mechanism of the optical response caused by DNA hybridization on the Au–PSi surface was qualitatively explained by the electromagnetic theory and electrochemical impedance spectroscopy (EIS). The lowest detection limit for target ODNs was estimated at around 10−14 mol L−1, when the baseline noise, a variation in the value of EOT is around 5 nm. The fabricated Au–PSi based optical biosensor has potential use in the discovery of new ODN drugs because it will be able to detect the binding event between ODNs and the target DNA.  相似文献   
996.
Nanoporous silver (NPS) and copper (NPC) obtained by dealloying AgAl and CuAl alloys, respectively, were used as both three-dimensional templates and reducing agents for the fabrication of nanoporous PtAg (NPS-Pt) and PtCu (NPC-Pt) alloys with hollow ligaments by a simple galvanic replacement reaction with H(2)PtCl(6). Electron microscopy and X-ray diffraction characterizations demonstrate that NPS and NPC with similar ligament sizes (30-50 nm) have different effects on the formed hollow nanostructures. For NPS-Pt, the shell of the hollow ligament is seamless. However, the shell of NPC-Pt is comprised of small pores and alloy nanoparticles with a size of ~3 nm. The as-prepared NPS-Pt and NPC-Pt exhibit remarkably improved electrocatalytic activities towards the oxidation of ethanol and H(2)O(2) compared with state-of-the-art Pt/C catalyst, and can be used for sensitive electrochemical sensing applications. The hierarchical nanoporous structure also provides a good microenvironment for enzymes. After immobilization of glucose oxidase (GOx), the enzyme modified nanoporous electrode can sensitively detect glucose in a wide linear range (0.6-20 mM).  相似文献   
997.
We present an important role of the ratio of affinities in unmodified gold nanoparticles-based colorimetric aptasensor reactions. An affinity ratio, representing the competitive interactions among aptamers, targets, and unmodified gold nanoparticles (umAuNPs), was found to be an important factor for the sensitivity (the performance), where the affinity ratio is the affinity of the aptamer to targets divided by the affinity to umAuNPs (K(dAuNP)/K(dTarget)). In this study, the five different aptamers having different affinity ratios to both umAuNPs and targets are used, and the degree of color change is well correlated with its affinity ratio. This result is verified by using a tetracycline binding aptamer (TBA) showing different affinities to its three derivatives, tetracycline, oxytetracycline and doxycycline. Based on this model, the sensitivity of umAuNPs based colorimetric detection for ibuprofen can be enhanced simply through reducing the ibuprofen binding aptamer's affinity to umAuNP by using bis (p-sulfonatophenyl) phenylphosphine as an AuNP-capping ligand, instead of using the citrate. As a result, a clear color change is observed even at a 20-fold less amount of ibuprofen. This study presents that the performance (detection sensitivity) of umAuNPs-based colorimetric aptasensors could be improved by simply adjusting the affinity ratio of the aptamers to targets and umAuNPs, without knowing the conformational changes of aptamers upon the target binding or needing any modification of aptamer sequences.  相似文献   
998.
A sensitive and simple signal-on electrochemical assay for detection of Dam methyltransferase (MTase) activity based on DNA-functionalized gold nanoparticles (AuNPs) amplification coupled with enzyme-linkage reactions is presented. This new assay takes advantage of the steric hindrance of AuNPs and the electrostatic repulsion between the negative-charge phosphate backbones of DNA modified on the AuNPs and redox probe [Fe(CN)(6)](3-/4-). In this method, the self-assembled ssDNA on the electrode is hybridized with its complement ssDNA modified on AuNPs to form dsDNA AuNPs bioconjugates containing specific recognition sequence of Dam MTase and methylation-sensitive restriction endonuclease Dpn I. Then, the AuNPs approach to the electrode and result in blockage of electronic transmission. It is eT OFF state. In the presence of Dam MTase and Dpn I, the specific sequence is methylated and cleavaged, which in turn release the DNA modified AuNPs from the electrode surface allowing free exchange of electrons. It generates a measurable electrochemical signal (eT ON). Differential pulse voltammetry (DPV) is employed to detect the recover current, which is related to the concentration of the Dam MTase. This method is simple, sensitive, nonradioactive and without use of gel-electrophoresis, PCR or chromatographic separation. Under optimized conditions, a linear response to concentration of Dam MTase range from 0.2U/mL to 10 U/mL and a detection limit of 0.12 U/mL are obtained. Furthermore, our new assay is a promising method to detect Dam MTase in the Luria-Bertani (LB) medium, as well as to screen inhibitors or drugs for Dam MTase.  相似文献   
999.
An electronic DNAzyme sensor for highly sensitive detection of Pb(2+) is demonstrated by coupling the significant signal enhancement of the layer-by-layer (LBL) assembled quantum dots (QDs) with Pb(2+) specific DNAzymes. The presence of Pb(2+) cleaves the DNAzymes and releases the biotin-modified fragments, which further hybridize with the complementary strands immobilized on the gold substrate. The streptavidin-coated, QD LBL assembled nanocomposites were captured on the gold substrate through biotin-streptavidin interactions. Subsequent electrochemical signals of the captured QDs upon acid dissolution provide quantitative information on the concentrations of Pb(2+) with a dynamic range from 1 to 1000 nM. Due to the dramatic signal amplification by the numerous QDs, subnanomolar level (0.6 nM) of Pb(2+) can be detected. The proposed sensor also shows good selectivity against other divalent metal ions and thus holds great potential for the construction of general DNAzyme-based sensing platform for the monitoring of other heavy metal ions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号