首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7618篇
  免费   670篇
  国内免费   879篇
  2024年   31篇
  2023年   148篇
  2022年   316篇
  2021年   544篇
  2020年   393篇
  2019年   460篇
  2018年   407篇
  2017年   326篇
  2016年   382篇
  2015年   554篇
  2014年   653篇
  2013年   618篇
  2012年   778篇
  2011年   632篇
  2010年   418篇
  2009年   330篇
  2008年   326篇
  2007年   300篇
  2006年   234篇
  2005年   209篇
  2004年   145篇
  2003年   112篇
  2002年   134篇
  2001年   104篇
  2000年   72篇
  1999年   77篇
  1998年   66篇
  1997年   48篇
  1996年   43篇
  1995年   36篇
  1994年   47篇
  1993年   25篇
  1992年   22篇
  1991年   24篇
  1990年   25篇
  1989年   26篇
  1988年   17篇
  1987年   20篇
  1986年   17篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1953年   1篇
排序方式: 共有9167条查询结果,搜索用时 31 毫秒
151.
The Epic® system, a high-throughput label-free optical biosensor system, is applied for the biochemical interrogation of phosphor-specific interactions of the 14-3-3 protein and its substrates. It has shown the capability not only for high-throughput characterization of binding rank and affinity but also for the exploration of potential interacting kinases for the substrates. A perspective of biochemical applications for diagnostics and biomarker discovery, as well as cell-based applications for endogenous receptors and viral infection characterization, are also provided.  相似文献   
152.
Two essential requirements for probiotic bifidobacteria are that they be “live” and have “colonization” ability, following FAO/WHO guideline recommendations. The amount of research on the adhesion ability of bifidobacteria compares poorly with that of other probiotic bacteria, such as lactobacilli. The aim of the present study was to determine how gastrointestinal conditions affect the adhesion ability of bifidobacteria, and to investigate the relationship between the adhesion ability and the live/dead state of bifidobacteria. The adhesion ability of Bifidobacterium animalis KLDS2.0603 that had been subjected to the digestive enzymes, pepsin, trypsin, and proteinase K, was decreased significantly, but these treatments did not significantly change the strain’s survival rates, which were 98.78%, 97.60%, and 97.63% respectively. B. animalis KLDS2.0603 subjected to LiCl retained its adhesion ability but had a lower survival rate (59.28%) than the control group (P<0.01). B. animalis KLDS 2.0603 subjected to sodium metaperiodate exhibited higher adhesion ability than the control group (P<0.01), but the bacterial cells were killed totally. The results of transmission electron microscopy and laser scanning confocal microscopy showed that live/dead state of bifidobacteria was not one of the main factors that affected the adhesion ability of bifidobacteira, and that the substances affecting the adhesion ability of bifidobacteria were on the outer surface layer of the bifidobacterial cells. Our results also indicated that the substances related to the adhesion ability of bifidobacteria are proteinaceous. The above results will help us to understand the adhesion and colonization processes of bifidobacteria in the human gastrointestinal tract.  相似文献   
153.
154.

Background

The spread of MRSA strains at hospitals as well as in the community are of great concern worldwide. We characterized the MRSA clones isolated at Tunisian hospitals and in the community by comparing them to those isolated in other countries.

Results

We characterized 69 MRSA strains isolated from two Tunisian university hospitals between the years 2004-2008. Twenty-two of 28 (79%) community-associated MRSA (CA-MRSA) strains and 21 of 41 (51%) healthcare-associated MRSA (HA-MRSA) strains were PVL-positive. The PVL-positive strains belonged to predicted founder group (FG) 80 in MLST and carried either type IVc SCCmec or nontypeable SCCmec that harbours the class B mec gene complex. In contrast, very diverse clones were identified in PVL-negative strains: three FGs (5, 15, and 22) for HA-MRSA strains and four FGs (5, 15, 45, and 80) for CA-MRSA strains; and these strains carried the SCCmec element of either type I, III, IVc or was nontypeable. The nucleotide sequencing of phi7401PVL lysogenized in a CA-MRSA strain JCSC7401, revealed that the phage was highly homologous to phiSA2mw, with nucleotide identities of more than 95%. Furthermore, all PVL positive strains were found to carry the same PVL phage, since these strains were positive in two PCR studies, identifying gene linkage between lukS and mtp (major tail protein) and the lysogeny region, both of which are in common with phi7401PVL and phiSa2mw.

Conclusions

Our experiments suggest that FG80 S. aureus strains have changed to be more virulent by acquiring phi7401PVL, and to be resistant to β-lactams by acquiring SCCmec elements. These novel clones might have disseminated in the Tunisian community as well as at the Tunisian hospitals by taking over existing MRSA clones.
  相似文献   
155.
Abstract

Mutation of the proto-oncogene K-Ras is one of the most common molecular mechanisms in non-small cell lung cancer. Many drugs for treating lung cancer have been developed, however, due to clinical observed K-Ras mutations, corresponding chemotherapy and targeted therapy for such mutation are not efficient enough. In this study, on the basis of the crystal structure of K-Ras, 21 analogues (TKR01–TKR21) containing urea or thiourea were rationally designed, which can effectively inhibit the lung cancer cell A549 growth. The designing of these compounds was based on the structure of K-Ras protein, and the related groups were replaced by bioisosteres to improve the affinity and selectivity. Biological testing revealed that compound TKR15 could significantly inhibit the proliferation of A549 cell with IC50 of 0.21?µM. Docking analysis showed that the TKR15 can effectively bind to the hydrophobic cavity and form a hydrogen bond with the Glu37. In addition, through flow apoptosis assay and immunofluorescence staining assay, it confirmed that this compound can inhibit A549 cell proliferation with the mechanism of blocking K-RasG12V protein and effector proteins interactions through the apoptotic pathway. In conclusion, our studies in finding novel potent compound (TKR15) with confirmed mechanism showed great potential for further optimisation and other medicinal chemistry relevant studies.  相似文献   
156.
To determine how plantations of Caragana microphylla shrubs affect saline-alkali soil amelioration and revegetation, we investigated the vegetation and sampled soils from saline-alkali wasteland (SAW), perennial Caragana forestland (PCF), Caragana forest after fire disturbance (CFF). Results showed that with the development of Caragana Fabr., highly dominant species of Poaceae family, including Elymus dahuricus, Thermopsis lanceolata, Stipa tianschanica, died out in PCF. Moreover, Papilionaceae family, including Lespedeza indica, Oxytropis psammocharis, and Astragalus scaberrimus, was established both in PCF and CFF. Phytoremediation of saline-alkali wasteland (SAW) was achieved by plantation, resulting in the reduced soil pH, sodium adsorption ratio, exchangeable sodium percentage, salinity, and Na+ concentration around Caragana shrubs. Greater amounts of soil organic, total nitrogen, ammonium nitrogen, available phosphorus, and available potassium were observed in PCF topsoil than in SAW topsoil. The concentration of mineralized N in PCF soil was significantly lower than that in SAW soil at all sampled depths, indicating that Caragana shrubs were just using N and therefore less measured in soils. Fire disturbance resulted in decreased soil pH and salinity, but increased organic content, total nitrogen, and ammonium nitrogen. The improved soil parameters and self-recovery of shrubs indicated that Caragana shrubs were well established after burning event.  相似文献   
157.
Highlights? mir92a inactivation leads to loss of pharyngeal cartilages in zebrafish embryos ? mir92a is required for chondrogenic progenitor proliferation and survival ? Bmp signaling is positively regulated by mir92a in the pharyngeal region ? nog3 mRNA is degraded by mir92a to maintain Bmp activity  相似文献   
158.
Major depressive disorder (MDD) is a widespread and debilitating mental disorder. However, there are no biomarkers available to aid in the diagnosis of this disorder. In this study, a nuclear magnetic resonance spectroscopy–based metabonomic approach was employed to profile urine samples from 82 first-episode drug-naïve depressed subjects and 82 healthy controls (the training set) in order to identify urinary metabolite biomarkers for MDD. Then, 44 unselected depressed subjects and 52 healthy controls (the test set) were used to independently validate the diagnostic generalizability of these biomarkers. A panel of five urinary metabolite biomarkers—malonate, formate, N-methylnicotinamide, m-hydroxyphenylacetate, and alanine—was identified. This panel was capable of distinguishing depressed subjects from healthy controls with an area under the receiver operating characteristic curve (AUC) of 0.81 in the training set. Moreover, this panel could classify blinded samples from the test set with an AUC of 0.89. These findings demonstrate that this urinary metabolite biomarker panel can aid in the future development of a urine-based diagnostic test for MDD.Major depressive disorder (MDD)1 is a debilitating mental disorder affecting up to 15% of the general population and accounting for 12.3% of the global burden of disease (1, 2). Currently, the diagnosis of MDD still relies on the subjective identification of symptom clusters rather than empirical laboratory tests. The current diagnostic modality results in a considerable error rate (3), as the clinical presentation of MDD is highly heterogeneous and the current symptom-based method is not capable of adequately characterizing this heterogeneity (4). An approach that can be used to circumvent these limitations is to identify disease biomarkers to support objective diagnostic laboratory tests for MDD.Metabonomics, which can measure the small molecules in given biosamples such as plasma and urine without bias (5), has been extensively used to characterize the metabolic changes of diseases and thus facilitate the identification of novel disease-specific signatures as putative biomarkers (610). Nuclear magnetic resonance (NMR) spectroscopy–based metabonomic approaches characterized by sensitive, high-throughput molecular screening have been employed previously in identifying novel biomarkers for a variety of neuropsychiatric disorders, including stroke, bipolar disorder, and schizophrenia (1113).Specifically with regard to MDD, several animal studies have already characterized the metabolic changes in the blood and urine (1419). These studies provide valuable clues as to the pathophysiological mechanism of MDD. However, no study has been designed with the aim of diagnosing this disease. Recently, using an NMR-based metabonomic approach, this research group identified a unique plasma metabolic signature that enables the discrimination of MDD from healthy controls with both high sensitivity and specificity (20). These findings motivated further study on urinary diagnostic metabolite biomarkers for MDD, which would be more valuable from a clinical applicability standpoint, as urine can be more non-invasively collected. Moreover, previous studies have also demonstrated the feasibility of identifying diagnostic metabolite biomarkers of psychiatric disorders in the urine. For example, using an NMR-based metabonomics approach, Yap et al. (21) identified a unique urinary metabolite signature that clearly discriminated autism patients from healthy controls. As systemic metabolic disturbances have been observed in the urine of a depressed animal model, it is likely that diagnostic metabolite markers for MDD can be detected in human urine.Therefore, in this study, NMR spectroscopy combined with multivariate pattern recognition techniques were used to profile 82 first-episode drug-naïve MDD subjects and 82 healthy controls (the training set) in order to identify potential metabolite biomarkers for MDD. Furthermore, 44 unselected MDD subjects and 52 healthy controls (the test set) were employed to independently validate the diagnostic performance of these urinary metabolite biomarkers.  相似文献   
159.
Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and plays an important role in sex determination in Drosophila melanogaster. In this study, the snf gene from Antheraea pernyi (Lepidoptera: Saturniidae), an economically important insect, was isolated and characterized. The obtained 925 bp cDNA sequence contains an open reading frame of 669 bp encoding a polypeptide of 222 amino acids, showing 78% sequence identity to that from D. melanogaster. A database search revealed that SNF protein homologs are present in many animals, including invertebrates and vertebrates, with more than 70% amino acid sequence identities, suggesting that they were highly conserved during the evolution of animals. Phylogenetic analysis revealed that A. pernyi SNF was closely related to Bombyx mori SNF. Quantitative real-time PCR (qRT-PCR) analysis showed that the A. pernyi snf gene was transcribed during five larval developmental stages, and in six tested tissues (ovaries, testes, silk glands, fat body, integument, and hemolymph), with the most abundance determined in the gonads (ovaries or testes). Investigation of expression changes throughout embryonic development indicated that A. pernyi snf mRNA was expressed at a low level from days 0 to 4, and reached a maximum level at day 10, but decreased to a low level before hatching. These results suggest that the product of the snf gene may play important roles in the development of A. pernyi.  相似文献   
160.
A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans was cloned and expressed in Escherichia coli BL21 (DE3). A downstream gene adjacent to the β-subunit was necessary for the functional expression of the recombinant NHase. The structural gene order of the Co-type NHase was α-subunit beyond β-subunit, different from the order typically reported for Co-type NHase genes. The NHase exhibited adequate thermal stability, with a half-life of 1.5 h at 50 °C. The NHase efficiently hydrated 3-cyanopyridine to produce nicotinamide. In a 1-L reaction mixture, 3.6 mol of 3-cyanopyridine was completely converted to nicotinamide in four feedings, exhibiting a productivity of 187 g nicotinamide/g dry cell weight/h. An industrial auto-induction medium was applied to produce the recombinant NHase in 10-L fermenter. A glycerol-limited feeding method was performed, and a final activity of 2170 U/mL culture was achieved. These results suggested that the recombinant NHase was efficiently cloned and produced in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号