This study was designed to investigate the protective effect of CD4+CD25+ regulatory T cells (Tregs) against zona pellucida glycoprotein 3 peptide (pZP3) immunization‐induced premature ovarian insufficiency (POI) in mice. A mouse POI model was induced by two subcutaneous injections of pZP3 (50 nmol/L). Mice in the pZP3‐Treg group were intraperitoneally injected with 5 × 105 CD4+CD25+ Tregs after the POI model was established. Sex hormone levels, follicle numbers, apoptotic events, and the Akt/FOXO3a signaling pathway molecules in the ovaries were assessed. Compared with control group, the weight of ovaries in both pZP3 group and pZP3‐Treg group was decreased and no difference was found between them. The number of follicles in the Treg transferred mice, like in pZP3 group, was significantly reduced compared to the control group, but showed a modest improvement when compared the pZP3 group alone. Significantly lower serum concentrations of follicle‐stimulating hormone, luteinizing hormone, and anti‐zona pellucida antibodies (AZPAbs) were found, while the concentrations of estradiol and anti‐Mullerian hormone increased. In mechanism, Treg cell transfer to ZP3 treated mice restored the levels of Caspase3 to control levels, and partially restored Bax, however, had no effect on Bcl‐2. Moreover, Treg cell transfer to ZP3 treated mice partially restored the levels of Akt and FOXO3a, and partially restored the ratios of p‐Akt/Akt and p‐FOXO3a/FOXO3a. In conclusion, Treg cells improved some aspects of ZP3‐induced POI which may be mediate by suppressing ovarian cells apoptosis and involving the Akt/FOXO3a signaling pathway. Therefore, Treg cells may be protective against autoimmune POI. 相似文献
WDR62 is a microcephaly-related, microtubule (MT)-associated protein (MAP) that localizes to the spindle pole and regulates spindle organization, but the underlying mechanisms remain elusive. Here, we show that WDR62 regulates spindle dynamics by recruiting katanin to the spindle pole and further reveal a TPX2–Aurora A–WDR62–katanin axis in cells. By combining cellular and in vitro experiments, we demonstrate that WDR62 shows preference for curved segments of dynamic GDP-MTs, as well as GMPCPP- and paclitaxel-stabilized MTs, suggesting that it recognizes extended MT lattice. Consistent with this property, WDR62 alone is inefficient in recruiting katanin to GDP-MTs, while WDR62 complexed with TPX2/Aurora A can potently promote katanin-mediated severing of GDP-MTs in vitro. In addition, the MT-binding affinity of WDR62 is autoinhibited through JNK phosphorylation-induced intramolecular interaction. We propose that WDR62 is an atypical MAP and functions as an adaptor protein between its recruiting factor TPX2/Aurora A and the effector katanin to orchestrate the regulation of spindle dynamics. 相似文献
Murine AIDS (MAIDS) is caused by a defective retrovirus which encodes a gag fusion protein (Pr60gag). We previously reported that this virus induced an oligoclonal proliferation of infected cells and suggested that this cell expansion was an important event in the pathogenesis of MAIDS. To identify these target cells, we constructed novel defective viruses whose genomes could be detected with specific probes. Helper-free stocks of these viruses induced MAIDS. Using in situ hybridization and immunocytochemistry and Southern analysis, we found that most infected cells belong to the B-cell lineage. Transformation of these B cells appears to be the primary event responsible for the development of immunodeficiency. This animal model may be relevant to our understanding of AIDS, of the immunodeficiencies associated with B-cell lymphoproliferative disorders, and of the role of B-cell proliferation and transformation in the effects of superantigens, since Pr60gag appears to be a superantigen. 相似文献
Although the current glucocorticoids (GCs) treatment for systemic lupus erythematosus (SLE) is effective to a certain extent, the difference in therapeutic effect between patients is still a widespread problem. Some patients can have repeated attacks that greatly diminish their quality of life. This study was conducted to investigate the relationship between HSP90AA2 polymorphisms and disease susceptibility, GCs efficacy and health-related quality of life (HRQoL) in Chinese SLE patients. A case–control study was performed in 470 SLE patients and 470 normal controls. Then, 444 patients in the case group were followed up for 12 weeks to observe efficacy of GCs and improvement of HRQoL. Two single nucleotide polymorphisms (SNPs) of HSP90AA2 were selected for genotyping: rs1826330 and rs6484340. HRQoL was assessed using the SF-36 questionnaire. The minor T allele of rs1826330 and the TT haplotype formed by rs1826330 and rs6484340 showed associations with decreased SLE risk (T allele: PBH?=?0.022; TT haplotype: PBH?=?0.033). A significant association between rs6484340 and improvement of HRQoL was revealed in the follow-up study. Five subscales of SF-36 were appeared to be influenced by rs6484340: total score of SF-36 (additive model: PBH?=?0.026), physical function (additive model: PBH?=?0.026), role-physical (recessive model: PBH?=?0.041), mental health (dominant model: PBH?=?0.047), and physical component summary (additive model: PBH?=?0.026). No statistical significance was found between HSP90AA2 gene polymorphisms and GCs efficacy. These results revealed a genetic association between HSP90AA2 and SLE. Remarkably, HSP90AA2 has an impact on the improvement of HRQoL in Chinese population with SLE. 相似文献
LncRNAs has been demonstrated to modulate neoplastic development by modulating downstream miRNAs and functional genes. In this study, we aimed to detect the interaction among lncRNA ZFAS1 miR‐296‐5p and USF1. We explored the proliferation, migration and invasion of cholangiocarcinoma. The differentially expressed ZFAS1 was discovered in both tissues and cell lines by qRT‐PCR. The targeting relationship between miR‐296‐5p and ZFAS1 or USF1 was validated by dual‐luciferase assay. The impact of ZFAS1 on CCA cell proliferation was observed by CCK‐8 assay. The protein expression of USF1 was determined by Western blot. The effects of ZFAS1, miR‐296‐5p and USF1 on tumour growth were further confirmed using xenograft model. LncRNA ZFAS1 expression was relatively up‐regulated in tumour tissues and cells while miR‐296‐5p was significantly down‐regulated. Knockdown of ZFAS1 significantly suppressed tumour proliferation, migration, invasion and USF1 expression. Overexpressed miR‐296‐5p suppressed cell proliferation and metastasis. Knockdown of USF1 inhibited cell proliferation and metastasis and xenograft tumour growth. In conclusion, ZFAS1 might promote cholangiocarcinoma proliferation and metastasis by modulating USF1 via miR‐296‐5p. 相似文献
The plasma level of the inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) is a strong predictor of disease development and premature mortality in the general population. Unhealthy lifestyle habits such as smoking or unhealthy eating is known to elevate the suPAR level. We aimed to investigate whether change in lifestyle habits impact on the suPAR level, and whether the resultant levels are associated with mortality.
Results
Paired suPAR measurements from baseline- and the 5-year visit of the population-based Inter99 study were compared with the habits of diet, smoking, alcohol consumption, and physical activity. Paired suPAR measurements for 3225 individuals were analyzed by linear regression, adjusted for demographics and lifestyle habits. Compared to individuals with a healthy lifestyle, an unhealthy diet, low physical activity, and daily smoking were associated with a 5.9, 12.8, and 17.6% higher 5-year suPAR, respectively. During 6.1 years of follow-up after the 5-year visit, 1.6% of those with a low suPAR (mean 2.93 ng/ml) died compared with 3.8% of individuals with a high suPAR (mean 4.73 ng/ml), P < 0.001. In Cox regression analysis, adjusted for demographics and lifestyle, the hazard ratio for mortality per 5-year suPAR doubling was 2.03 (95% CI: 1.22–3.37).
Conclusion
Lifestyle has a considerable impact on suPAR levels; the combination of unhealthy habits was associated with 44% higher 5-year suPAR values and the 5-year suPAR was a strong predictor of mortality. We propose suPAR as a candidate biomarker for lifestyle changes as well as the subsequent risk of mortality.
MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad specificity of miRNAs, which may target several mRNAs.
Result
In this study, we developed a method for comprehensive annotation of miRNA array or deep sequencing data for investigation of cellular biological effects. Using this method, the specific pathways and biological processes involved in Alzheimer’s disease were predicted with high correlation in four independent samples. Furthermore, this method was validated for evaluation of cadmium telluride (CdTe) nanomaterial cytotoxicity. As a result, apoptosis pathways were selected as the top pathways associated with CdTe nanoparticle exposure, which is consistent with previous studies.
Conclusions
Our findings contribute to the validation of miRNA microarray or deep sequencing results for early diagnosis of disease and evaluation of the biological safety of new materials and drugs.