首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30352篇
  免费   2382篇
  国内免费   2076篇
  34810篇
  2024年   67篇
  2023年   440篇
  2022年   1017篇
  2021年   1706篇
  2020年   1038篇
  2019年   1341篇
  2018年   1280篇
  2017年   929篇
  2016年   1272篇
  2015年   1856篇
  2014年   2208篇
  2013年   2474篇
  2012年   2767篇
  2011年   2461篇
  2010年   1482篇
  2009年   1276篇
  2008年   1505篇
  2007年   1312篇
  2006年   1153篇
  2005年   942篇
  2004年   791篇
  2003年   664篇
  2002年   594篇
  2001年   535篇
  2000年   470篇
  1999年   483篇
  1998年   268篇
  1997年   290篇
  1996年   292篇
  1995年   282篇
  1994年   253篇
  1993年   179篇
  1992年   276篇
  1991年   185篇
  1990年   151篇
  1989年   151篇
  1988年   92篇
  1987年   85篇
  1986年   60篇
  1985年   68篇
  1984年   29篇
  1983年   32篇
  1982年   18篇
  1981年   15篇
  1980年   12篇
  1979年   9篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
991.
We aimed to investigate the role of exosomal miR-4443 in metastasis of breast cancer (BCa). In vitro wound-healing assay and transwell invasion assay were used to investigate effect of miR-4443 on BCa cells. Animal experiments were performed to confirm its effects in vivo. miR-4443 promotes the metastasis of BCa cells through downregulating tissue inhibitors of metalloproteinase 2 (TIMP2) and upregulating matrix metalloproteinases (MMPs). Highly invasive BCa cells have a higher expression of miR-4443 in both cells and exosomes. The exosomes derived from highly invasive BCa cells mainly gather in the primary tumor and liver. In vivo, overexpression of miR-4443 in noninvasive BCa cells induces liver metastasis, accompanied with downregulated TIMP2, and upregulated MMP-2 in both the primary tumor and liver. When we armed MCF-10A exosomes with miR-4443 inhibitors to treat mice bearing high-miR-4443 tumors, exosomes accumulated in the primary tumor, and liver following the upregulation of TIMP2 and downregulation of MMP2, and the metastasis was inhibited. Highly invasive BCa cells destroy natural barriers against metastasis by delivering exosomal miR-4443 to stromal cells of the primary tumor and impairing TIMP2, consequently activating MMP; circulating exosomal miR-4443 might promote BCa cells lodging in future metastatic sites through the similar mechanisms.  相似文献   
992.
993.
Chalcone synthase (CHS) is a key enzyme and producing flavonoid derivatives as well play a vital roles in sustaining plant growth and development. However, the systematic and comprehensive analysis of CHS genes in island cotton (G. barbadense) has not been reported yet especially response to cytoplasmic male sterility (CMS). To fill this knowledge gap, a genome-wide investigation of CHS genes were studied in island cotton. A total of 20 GbCHS genes were identified and grouped into five GbCHSs. The gene structure analysis revealed that most of GbCHS genes consisted of two exons and one intron, and 20 motifs were identified. Twenty five pairs duplicated events (12 GbCHS genes) were identified including 23 segmental duplication pairs and two tandem duplication events, representing that GbCHS gene family amplification mainly owned to segmental duplication events and evolving slowly. Gene expression analysis exhibited that the GbCHS family genes presented a diversity expression patterns in various organs of cotton. Coupled with functional predictions and gene expression, the abnormal expression of GbCHS06, 10, 16 and 19 might be associated with pollen abortion of CMS line in island cotton. Conclusively, GbCHS genes exhibited diversity and conservation in many aspects, which will help to better understand functional studies and a reference for CHS research in island cotton and other plants.  相似文献   
994.
995.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.  相似文献   
996.
997.
In this study, our objective is to evaluate the potential of a novel Sorafenib derivative, named HLC-080, as a new anticancer agent for colon cancer. We firstly carried out MTT assay, colony formation assay, flow cytometry analysis and transwell invasion assay to determine effect of our compound HLC-080 on cell viability, anti-proliferation activity, cell cycle arrest and the intervention on cell invasion, respectively. On the other hand, in vivo antitumor activity of HLC-080 was also tested using H22 xenograft model and the angiogenesis effect of HLC-080 was measured by EA.hy926 tube formation assay. The expression levels of various proteins in HLC-080 treated with HT-29 cell lines were examined using Western blot and ELISA experiments. The results showed that HLC-080 could dramatically inhibit the growth and colony formation of various tumor cells, therefore exhibited remarkable antitumor activity. HLC-080 can induce cell cycle arrest at G1 phase in HT-29 cells and subsequently inhibit the invasive potential of colon cancer cells. HLC-080 also exhibits anti-angiogenesis effect in EA.hy926 model. Additionally, the in vivo study showed that HLC-080 was able to reduced the tumor weight with the rate of 35.81%. And at the concentration of 0.352±0.034 µM, HLC-080 is able to reduce half of the regular protein level of p-c-Raf (Ser259), consequently block Raf/MEK/ERK signaling in HT-29 cell lines. In conclusion, our study suggests that Sorafenib derivative HLC-080 has the potential to inhibit cell proliferation and angiogenesis, Since, HLC-080 is particularly active against human colon cancer cells, our study highlights that HLC-080 and its related analogues may serve as a new anti-cancer drug, particularly against colon cancer.  相似文献   
998.
Membrane-embedded prenyltransferases from the UbiA family catalyze the Mg2+-dependent transfer of a hydrophobic polyprenyl chain onto a variety of acceptor molecules and are involved in the synthesis of molecules that mediate electron transport, including Vitamin K and Coenzyme Q. In humans, missense mutations to the protein UbiA prenyltransferase domain-containing 1 (UBIAD1) are responsible for Schnyder crystalline corneal dystrophy, which is a genetic disease that causes blindness. Mechanistic understanding of this family of enzymes has been hampered by a lack of three-dimensional structures. We have solved structures of a UBIAD1 homolog from Archaeoglobus fulgidus, AfUbiA, in an unliganded form and bound to Mg2+ and two different isoprenyl diphosphates. Functional assays on MenA, a UbiA family member from E. coli, verified the importance of residues involved in Mg2+ and substrate binding. The structural and functional studies led us to propose a mechanism for the prenyl transfer reaction. Disease-causing mutations in UBIAD1 are clustered around the active site in AfUbiA, suggesting the mechanism of catalysis is conserved between the two homologs.  相似文献   
999.
1000.
Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号