首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2845篇
  免费   209篇
  国内免费   211篇
  3265篇
  2024年   5篇
  2023年   44篇
  2022年   119篇
  2021年   192篇
  2020年   109篇
  2019年   129篇
  2018年   119篇
  2017年   115篇
  2016年   155篇
  2015年   196篇
  2014年   210篇
  2013年   247篇
  2012年   271篇
  2011年   245篇
  2010年   149篇
  2009年   120篇
  2008年   148篇
  2007年   113篇
  2006年   88篇
  2005年   69篇
  2004年   63篇
  2003年   48篇
  2002年   42篇
  2001年   32篇
  2000年   24篇
  1999年   29篇
  1998年   17篇
  1997年   20篇
  1996年   23篇
  1995年   12篇
  1994年   19篇
  1993年   9篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   3篇
排序方式: 共有3265条查询结果,搜索用时 0 毫秒
121.
ATP-binding cassette (ABC) transporters are integral membrane proteins that utilised energy from ATP hydrolysis to translocate substrates across the membrane. In addition to the common nucleotide-binding domains (NBDs) and transmembrane domains (TMDs), the methionine ABC transporter has C-terminal regulatory domains (C2 domains) that belong to ACT protein family. When the amount of methionine in the cell is high, the transport stops. This phenomenon is called trans-inhibition. To understand how a trans-inhibited protein returns to an uninhibited, resting state, we performed steered molecular dynamic simulations with and without the substrates. From the simulations, we observed some important conformational changes in the whole ABC transporter, including the constriction in the translocation pathway in the TMDs and approach of the NBDs. However, the C2 domains behaved differently in two types of the simulations. These findings might help to explain the relationship of the conformational changes of the C2 domains with the rearrangements of the NBDs or TMDs, and provide a way to understand the trans-inhibition from an opposite direction.  相似文献   
122.
Crop improvement is a multifaceted micro-evolutionary process, involving changes in breeding approaches, planting configurations and consumption preferences of human beings. Recent research has started to identify the specific genes or genomic regions correlate to improved agronomic traits, however, an apparent blank between the genetic structure of crop elite varieties and their improving histories in diverse modern breeding programs is still in existence. Foxtail millet (Setaria italica) was one of the earliest cereal crops to be domesticated and served as a staple crop for early civilizations in China, where it is still widely grown today. In the present trial, a panel of foxtail millet elite varieties, which were released in the last sixty years in different geographical regions of China, was characterized using microsatellite markers (SSRs). A clear separation of two subpopulations corresponding to the two eco-geographical regions of foxtail millet production in China was identified by the dataset, which also indicated that in more recently released elite varieties, large quantities of accessions have been transferred from spring-sowing to summer-sowing ecotypes, likely as a result of breeding response to planting configurations. An association mapping study was conducted to identify loci controlling traits of major agronomic interest. Furthermore, selective sweeps involved in improvement of foxtail millet were identified as multi-diverse minor effect loci controlling different agronomic traits during the long-term improvement of elite varieties. Our results highlight the effect of transition of planting configuration and breeding preference on genetic evolvement of crop species.  相似文献   
123.
Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.  相似文献   
124.
To understand the relationship between elevation and bacterial communities in wastewater treatment plants (WWTPs), bacterial communities in 21 municipal WWTPs across China, located 9 to 3,660 m above sea level (masl), were investigated by 454 pyrosequencing. A threshold for the association of elevation with bacterial community richness and evenness was observed at approximately 1,200 masl. At lower elevations, both richness and evenness were not significantly associated with elevation. At higher elevations, significant declines with increased elevations were observed for community richness and evenness. The declining evenness trend at the phylum level was reflected by distinct trends in relative abundance for individual bacterial phyla. Betaproteobacteria, Bacteroidetes, and Firmicutes displayed significant increases, while most other phyla showed declines. Spearman correlation analysis indicated that the community richness and evenness at high elevations were more correlated with elevation than with any other single environmental variable. Redundancy analysis indicated that the contribution of elevation to community composition variances increased from 3% at lower elevations to 11% at higher elevations whereas the community composition variance at higher elevations remained much more explained by operational variables (39.2%) than by elevation. The influent total phosphorus concentration, food/microorganism ratio, and treatment process were the three shared dominant contributors to the community composition variance across the whole elevation gradient, followed by effluent ammonia nitrogen and temperature at higher elevations.  相似文献   
125.
S-Adenosyl-L-methionine: uroporphyrinogen III methyltransferase (SUMT), a key regulatory enzyme, converts uroporphyrinogen III to precorrin-2 in the porphinoids biosynthesis. In this study, the mature SUMT was signified that the maize SUMT precursor encoded by the open reading frame of maize SUMT cDNA was deleted the first 91 amino acids constituting the postulated signal peptide. Several mature SUMT fusion and deletion mutants were conducted. It actively expressed in Escherichia coli that the mature SUMT, or the truncated one deleting the C-terminal extra 52 amino acids based on SUMT sequence comparisons. On the contrary, it expressed as an inclusion body in E. coli that the mature SUMT fusion mutant, the SUMT precursor, or the mature SUMT deleting the N-terminal 36 amino acids including glycine-rich region involved directly in SAM binding. The purified His6-tagged mature SUMT was homodimer with a molecular weight of 34 kDa, as shown by SDS-PAGE, 52 kDa using gel-filtration chromatography, and 79 kDa by dynamic light scattering assay. Red fluorescent compounds were associated with the recombinant mature SUMT which were identified as sirohydrochlorin and trimethylpyrrocorphin by spectroscopic analysis. This association slightly altered the protein secondary structure confirmed by circular dichroism assay.  相似文献   
126.
127.
Wang C  Sheng Z  Niu L 《Biochemistry》2011,50(33):7284-7293
2,3-Benzodiazepine derivatives are AMPA receptor inhibitors, and they are potential drugs for treating some neurological diseases caused by excessive activity of AMPA receptors. Using a laser-pulse photolysis and rapid solution flow techniques, we characterized the mechanism of action of a 2,3-benzodiazepine derivative, termed BDZ-f, by measuring its inhibitory effect on the channel-opening and channel-closing rate constants as well as the whole-cell current amplitude of the homomeric GluA2Q AMPA receptor channels. We also investigated whether BDZ-f competes with GYKI 52466 for binding to the same site on GluA2Q(flip). GYKI 52466 is the prototypic 2,3-benzodiazepine compound, and BDZ-f is the N-3 methylcarbamoyl derivative. We found that BDZ-f is a noncompetitive inhibitor with a slight preference for the closed-channel state of both the flip and the flop variants of GluA2Q. Similar to other 2,3-benzodiazepine compounds that we have previously characterized, BDZ-f inhibits GluA2Q(flip) by forming an initial, loose intermediate that is partially conducting; however, this intermediate rapidly isomerizes into a tighter, fully inhibitory receptor-inhibitor complex. BDZ-f binds to the same noncompetitive site as GYKI 52466 does. Together, our results show that the addition of an N-3 methylcarbamoyl group to the diazepine ring with the azomethine feature (i.e., GYKI 52466) is what makes BDZ-f more potent and more selective toward the closed-channel conformation than the original GYKI 52466. Our results have useful implications for the structure-activity relationship of the 2,3-benzodiazepine series.  相似文献   
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号