首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35052篇
  免费   2872篇
  国内免费   1901篇
  39825篇
  2024年   69篇
  2023年   390篇
  2022年   939篇
  2021年   1643篇
  2020年   1037篇
  2019年   1256篇
  2018年   1237篇
  2017年   868篇
  2016年   1333篇
  2015年   2032篇
  2014年   2375篇
  2013年   2551篇
  2012年   3091篇
  2011年   2768篇
  2010年   1723篇
  2009年   1430篇
  2008年   1667篇
  2007年   1520篇
  2006年   1354篇
  2005年   1146篇
  2004年   1020篇
  2003年   865篇
  2002年   747篇
  2001年   677篇
  2000年   681篇
  1999年   659篇
  1998年   386篇
  1997年   335篇
  1996年   359篇
  1995年   333篇
  1994年   325篇
  1993年   216篇
  1992年   351篇
  1991年   270篇
  1990年   306篇
  1989年   257篇
  1988年   189篇
  1987年   171篇
  1986年   152篇
  1985年   134篇
  1984年   121篇
  1983年   95篇
  1982年   77篇
  1981年   61篇
  1979年   75篇
  1978年   55篇
  1977年   53篇
  1975年   59篇
  1974年   47篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Characteristic pathological changes in osteonecrosis of the femoral head (ONFH) include reduced osteogenic differentiation of bone mesenchymal stem cells (BMSCs), impaired osseous circulation and increased intramedullary adipocytes deposition. Osthole is a bioactive derivative from coumarin with a wide range of pharmacotherapeutic effects. The aim of this study was to unveil the potential protective role of osthole in alcohol‐induced ONFH. In vitro, ethanol (50 mmol/L) remarkably decreased the proliferation and osteogenic differentiation of BMSCs and impaired the proliferation and tube formation capacity of human umbilical vein endothelial cell (HUVECs), whereas it substantially promoted the adipogenic differentiation of BMSCs. However, osthole could reverse the effects of ethanol on osteogenesis via modulating Wnt/β‐catenin pathway, stimulate vasculogenesis and counteract adipogenesis. In vivo, the protective role of osthole was confirmed in the well‐constructed rat model of ethanol‐induced ONFH, demonstrated by a cascade of radiographical and pathological investigations including micro‐CT scanning, haematoxylin‐eosin staining, TdT‐mediated dUTP nick end labelling, immunohistochemical staining and fluorochrome labelling. Taken together, for the first time, osthole was demonstrated to rescue the ethanol‐induced ONFH via promoting bone formation, driving vascularization and retarding adipogenesis.  相似文献   
992.
Early diagnosis of lung adenocarcinoma requires effective risk predictors. TNFRII was reported to be related to tumorigenesis, but remained unclear in lung cancer. This research set out to investigate the relationship between the sTNFRII (serum TNFRII) level and the risk of lung adenocarcinoma less than 1 cm in diameter. Seventy-one pairs of subcentimetre lung adenocarcinoma patients and healthy controls were analysed through multiplex bead-based Luminex assay and found a significantly lower expression of sTNFRII in patients with subcentimetre lung adenocarcinoma than that in the healthy controls (P < .001), which was further verified through ONCOMINE database analysis. Increased levels of sTNFRII reduced the risk of subcentimetre lung adenocarcinoma by 89% (P < .001). Patients with a higher level of BLC had a 2.70-fold (P < .01) higher risk of subcentimetre adenocarcinoma. Furthermore, a higher BLC/TNFRII ratio was related to a 35-fold higher risk of subcentimetre adenocarcinoma. TNFRII showed good specificity, sensitivity and accuracy (0.72, 0.75 and 0.73, respectively), with an AUC of 0.73 (P < .001). In conclusion, the present study assessed the value of sTNFRII as a potential biomarker to predict the risk of subcentimetre lung adenocarcinoma and provided evidence for the further use of TNFRII as an auxiliary marker in the diagnosis of subcentimetre lung adenocarcinoma.  相似文献   
993.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   
994.
Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo-3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB-Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.  相似文献   
995.
996.
997.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   
998.
Transition metal sulfides hold promising potentials as Li‐free conversion‐type cathode materials for high energy density lithium metal batteries. However, the practical deployment of these materials is hampered by their poor rate capability and short cycling life. In this work, the authors take the advantage of hollow structure of CuS nanoboxes to accommodate the volume expansion and facilitate the ion diffusion during discharge–charge processes. As a result, the hollow CuS nanoboxes achieve excellent rate performance (≈371 mAh g?1 at 20 C) and ultra‐long cycle life (>1000 cycles). The structure and valence evolution of the CuS nanobox cathode are identified by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Furthermore, the lithium storage mechanism is revealed by galvanostatic intermittent titration technique and operando Raman spectroscopy for the initial charge–discharge process and the following reversible processes. These results suggest that the hollow CuS nanobox material is a promising candidate as a low‐cost Li‐free cathode material for high‐rate and long‐life lithium metal batteries.  相似文献   
999.
Perovskite solar cells (PSCs) have attracted much attention in the past decade and their power conversion efficiency has been rapidly increasing to 25.2%, which is comparable with commercialized solar cells. Currently, the long‐term stability of PSCs remains as a major bottleneck impeding their future commercial applications. Beyond strengthening the perovskite layer itself and developing robust external device encapsulation/packaging technology, integration of effective barriers into PSCs has been recognized to be of equal importance to improve the whole device’s long‐term stability. These barriers can not only shield the critical perovskite layer and other functional layers from external detrimental factors such as heat, light, and H2O/O2, but also prevent the undesired ion/molecular diffusion/volatilization from perovskite. In addition, some delicate barrier designs can simultaneously improve the efficiency and stability. In this review article, the research progress on barrier designs in PSCs for improving their long‐term stability is reviewed in terms of the barrier functions, locations in PSCs, and material characteristics. Regarding specific barriers, their preparation methods, chemical/photoelectronic/mechanical properties, and their role in device stability, are further discussed. On the basis of these accumulative efforts, predictions for the further development of effective barriers in PSCs are provided at the end of this review.  相似文献   
1000.
Lithium–sulfur batteries are a promising high energy output solution for substitution of traditional lithium ion batteries. In recent times research in this field has stepped into the exploration of practical applications. However, their applications are impeded by cycling stability and short life‐span mainly due to the notorious polysulfide shuttle effect. In this work, a multifunctional sulfur host fabricated by grafting highly conductive Co3Se4 nanoparticles onto the surface of an N‐doped 3D carbon matrix to inhibit the polysulfide shuttle and improve the sulfur utilization is proposed. By regulating the carbon matrix and the Co3Se4 distribution, N‐CN‐750@Co3Se4‐0.1 m with abundant polar sites is experimentally and theoretically shown to be a good LiPSs absorbent and a sulfur conversion accelerator. The S/N‐CN‐750@Co3Se4‐0.1 m cathode shows excellent sulfur utilization, rate performance, and cyclic durability. A prolonged cycling test of the as‐fabricated S/N‐CN‐750@Co3Se4‐0.1 m cathode is carried out at 0.2 C for more than 5 months which delivers a high initial capacity of 1150.3 mAh g?1 and retains 531.0 mAh g?1 after 800 cycles with an ultralow capacity reduction of 0.067% per cycle, maintaining Coulombic efficiency of more than 99.3%. The reaction details are characterized and analyzed by ex situ measurements. This work highly emphasizes the potential capabilities of transition‐metal selenides in lithium–sulfur batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号