首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3122篇
  免费   203篇
  国内免费   156篇
  3481篇
  2024年   14篇
  2023年   67篇
  2022年   151篇
  2021年   248篇
  2020年   176篇
  2019年   221篇
  2018年   198篇
  2017年   136篇
  2016年   206篇
  2015年   255篇
  2014年   335篇
  2013年   330篇
  2012年   315篇
  2011年   280篇
  2010年   141篇
  2009年   106篇
  2008年   103篇
  2007年   78篇
  2006年   44篇
  2005年   34篇
  2004年   20篇
  2003年   13篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1959年   2篇
排序方式: 共有3481条查询结果,搜索用时 15 毫秒
21.
22.
Xia Y  Min H  Rao G  Lv ZM  Liu J  Ye YF  Duan XJ 《Biodegradation》2005,16(5):393-402
Phenanthrene-degrading bacterium strain ZX4 was isolated from an oil-contaminated soil, and identified as Sphingomonas paucimobilis based on 16S rDNA sequence, cellular fatty acid composition, mol% G + C and Biolog-GN tests. Besides phenanthrene, strain ZX4 could also utilize naphthalene, fluorene and other aromatic compounds. The growth on salicylic acid and catechol showed that the strain degraded phenanthrene via salicylate pathway, while the assay of catechol 2, 3-dioxygenase revealed catechol could be metabolized through meta-cleavage pathway. Three genes, including two of meta-cleavage operon genes and one of GST encoding gene were obtained. The order of genes arrangement was similar to S-type meta-pathway operons. The phylogenetic trees based on 16S rDNA sequence and meta-pathway gene both revealed that strain ZX4 is clustered with strains from genus Sphingomonas.  相似文献   
23.

Background

In the past twenty years, codeine-containing cough syrups (CCS) was recognized as a new type of addictive drugs. However, the exact neurobiologic mechanisms underlying CCS-dependence are still ill-defined. The aims of this study are to identify CCS-related modulations of neural activity during the resting-state in CCS-dependent individuals and to investigate whether these changes of neural activity can be related to duration of CCS use, the first age of CCS use and impulse control deficits in CCS-dependent individuals. We also want to observe the impact of gray matter deficits on these functional results.

Methodology/Principal Findings

Thirty CCS-dependent individuals and 30 control subjects participated. Resting-state functional MRI was performed by using gradient-echo echo-planar imaging sequence. Regional homogeneity (ReHo) was calculated by using REST software. Voxel-based analysis of the ReHo maps between controls and CCS-dependent groups was performed using two-sample t tests (p<0.05, corrected for multiple comparisons). The Barratt Impulsiveness Scale 11 (BIS.11) was surveyed to assess participants'' impulsivity trait soon after MR examination. Abnormal clusters revealed by group comparison were extracted and correlated with impulsivity, duration of CCS use, and age of first CCS use. ReHo was diminished in the bilateral medial orbitofrontal cortex (mOFC) and left dorsal striatum in CCS-dependent individuals. There were negative correlations between mean ReHo in the bilateral medial OFC, left dorsal striatum and duration of CCS use, BIS.11 total scores, and the subscale of attentional impulsivity in CCS-dependent individuals. There was a significantly positive correlation between mean ReHo in the left dorsal striatum and age of first CCS use in CCS-dependent individuals. Importantly, these results still remain significant after statistically controlling for the regional gray matter deficits.

Conclusion

Resting-state abnormalities in CCS-dependent individuals revealed in the present study may further improve our understanding about the neural substrates of impulse control dysfunction in CCS-dependent individuals.  相似文献   
24.
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.

The long-distance movement of OPT3 is selective between herbaceous and woody plants as shown using Malus and Arabidopsis thaliana plants.  相似文献   
25.
Recently, many studies have attempted to illustrate the mechanism of autophagy in protection against oxidative stress to the heart induced by H(2)O(2). However, whether resveratrol-induced autophagy involves the p38 mitogen-activated protein kinase (MAPK) pathway is still unknown. This study aimed to investigate whether treating H9c2 cells with resveratrol increases autophagy and attenuates the cell death and apoptosis induced by oxidative stress via the p38 MAPK pathway. Resveratrol with or without SB202190, an inhibitor of the p38 MAPK pathway, was added 30 min before H(2)O(2). After H(2)O(2) treatment, the cells were incubated under 5% CO(2) at 37 °C for 24 h to assess cell survival and death or incubated for 20 min for Western blot and transmission electron microscopy. Flow cytometry was used to detect apoptosis after 6 h of H(2)O(2) treatment. Resveratrol at 20 μmol/L protected H9c2 cells treated with 100 μmol/L H(2)O(2) from oxidative damage. It increased cell survival and markedly decrease lactate dehydrogenase release. In addition, resveratrol increased autophagy and decreased H(2)O(2)-induced apoptosis. Furthermore, the protective effects of resveratrol were inhibited by 10 μmol/L SB202190. Thus, resveratrol protected H(2)O(2)-treated H9c2 cells by upregulating autophagy via the p38 MAPK pathway.  相似文献   
26.
The global insight into the relationships between miRNAs and their regulatory influences remains poorly understood. And most of complex diseases may be attributed to certain local areas of pathway (subpathway) instead of the entire pathway. Here, we reviewed the studies on miRNA regulations to pathways and constructed a bipartite miRNAs and subpathways network for systematic analyzing the miRNA regulatory influences to subpathways. We found that a small fraction of miRNAs were global regulators, environmental information processing pathways were preferentially regulated by miRNAs, and miRNAs had synergistic effect on regulating group of subpathways with similar function. Integrating the disease states of miRNAs, we also found that disease miRNAs regulated more subpathways than nondisease miRNAs, and for all miRNAs, the number of regulated subpathways was not in proportion to the number of the related diseases. Therefore, the study not only provided a global view on the relationships among disease, miRNA and subpathway, but also uncovered the function aspects of miRNA regulations and potential pathogenesis of complex diseases. A web server to query, visualize and download for all the data can be freely accessed at http://bioinfo.hrbmu.edu.cn/miR2Subpath.  相似文献   
27.
RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation pathway, which has extensive cross-talk with histone modifications. Here, we report that the maize RdDM regulator SAWADEE HOMEODOMAIN HOMOLOG 2 (SHH2) is an H3K9me1 reader. Our structural studies reveal that H3K9me1 recognition is achieved by recognition of the methyl group via a classic aromatic cage and hydrogen-bonding and salt-bridge interactions with the free protons of the mono-methyllysine. The di- and tri-methylation states disrupt the polar interactions, decreasing the binding affinity. Our study reveals a mono-methyllysine recognition mechanism which potentially links RdDM to H3K9me1 in maize.  相似文献   
28.
The present work aimed to investigate the mechanisms of nitric oxide (NO) and reactive oxygen species (ROS) generations and to explore their roles in the regulation of antioxidative responses in the wheat leaves under salinity. Except for an insignificant change of NO content and nitrate reductase (NR) activity due to 50 mM NaCl, NO, hydrogen peroxide, superoxide anion (O2?-), hydroxyl radical (?OH), chlorophyll and malondialdehyde content, as well as activities of nitric oxide synthase, NR, peroxidases (POD), catalase (CAT), and ascorbate peroxidase rose in response to different NaCl concentrations. Meanwhile, leaf superoxide dismutase activity lowered only at 50 mM NaCl. NaCl-stimulatory effects on NO content as well as POD and CAT activities could be partly alleviated by the application of 2-phenyl-4,4,5,5-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO, NO scavenger), exogenous CAT, or diphenylene iodonium (DPI, NADPH oxidase inhibitor). Native polyacrylamide gel electrophoresis also showed that the amount of POD (especially POD4, POD5, and POD7) and CAT (especially CAT1, CAT2, and CAT3) isozymes increased with increasing salinity but decreased by application of PTIO, CAT, or DPI. Furthermore, histochemical staining showed a similar change of O2?- generation. In addition, the inhibition of diamineoxidase (DAO), polyamine oxidase (PAO), and cell wall-bound POD (cw-POD) activities in NaCl-stressed seedlings seemed to be insensitive to the application of PTIO or DPI. Taken together, salinity-induced NO, H2O2, and O2?- generation influenced each other and played different roles in the regulation of antioxidant enzyme activities in the leaves of wheat seedlings under NaCl treatment.  相似文献   
29.
30.
Zhao Y  Lv M  Lin H  Hong Y  Yang F  Sun Y  Guo Y  Cui Y  Li S  Gao Y 《IUBMB life》2012,64(2):194-202
It has been known that Rho-associated protein kinase (ROCK) signaling regulates the migration of vascular smooth muscle cells (VSMCs). However, the isoform-specific roles of ROCK and its underlying mechanism in VSMC migration are not well understood. The current study thus aimed to investigate the roles of ROCK1/2 and their relationship to the MAPK signaling pathway in platelet-derived growth factor (PDGF)-induced rat aorta VSMC migration by manipulating ROCK gene expression. The results revealed that ROCK1 small interfering ribonucleic acid (siRNA) rather than ROCK2 siRNA decreased PDGF-BB-generated VSMC migration, and upregulation of ROCK1 expression via transfection of constructed pEGFP-C1/ROCK1 plasmid further increased the migration of PDGF-BB-treated VSMCs. In PDGF-treated VSMCs, ROCK1 siRNA did not affect the phosphorylation levels of ERK and p38 in the cytoplasm, but decreased the level of ERK phosphorylation in the nucleus. These findings demonstrate that activated ROCK1 can promote VSMC migration through facilitating phosphorylation and nuclear translocation of ERK protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号