首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9185篇
  免费   693篇
  国内免费   776篇
  10654篇
  2024年   18篇
  2023年   129篇
  2022年   300篇
  2021年   506篇
  2020年   308篇
  2019年   440篇
  2018年   405篇
  2017年   253篇
  2016年   430篇
  2015年   591篇
  2014年   701篇
  2013年   789篇
  2012年   888篇
  2011年   764篇
  2010年   437篇
  2009年   434篇
  2008年   456篇
  2007年   397篇
  2006年   358篇
  2005年   257篇
  2004年   249篇
  2003年   202篇
  2002年   148篇
  2001年   133篇
  2000年   121篇
  1999年   102篇
  1998年   100篇
  1997年   91篇
  1996年   83篇
  1995年   71篇
  1994年   64篇
  1993年   46篇
  1992年   78篇
  1991年   47篇
  1990年   33篇
  1989年   37篇
  1988年   22篇
  1987年   25篇
  1986年   25篇
  1985年   24篇
  1984年   11篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over‐expression of the BR‐synthesis gene D11 or a BR‐signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non‐transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop.  相似文献   
52.
Recent studies have demonstrated the possible function of miR-139-5p in tumorigenesis. However, the exact mechanism of miR-139-5p in cancer remains unclear. In this study, the association of miR-139-5p expression with esophageal squamous cell carcinoma (ESCC) was evaluated in 106 pairs of esophageal cancer and adjacent non-cancerous tissue from ESCC patients. The tumor suppressive features of miR-139-5p were measured by evaluating cell proliferation and cell cycle state, migratory activity and invasion capability, as well as apoptosis. Luciferase reporter assay and Western blot analysis were performed to determine the target gene regulated by miR-139-5p. The mRNA level of NR5A2, the target gene of miR-139-5p, was determined in ESCC patients. Results showed that reduced miR-139-5p level was associated with lymph node metastases of ESCC. MiR-139-5p was investigated to induce cell cycle arrest in the G0/G1 phase and to suppress the invasive capability of esophageal carcinoma cells by targeting the 3′UTR of oncogenic NR5A2. Cyclin E1 and MMP9 were confirmed to participate in cell cycle arrest and invasive suppression induced by NR5A2, respectively. Pearson correlation analysis further confirmed the significantly negative correlation between miR-139-5p and NR5A2 expression. The results suggest that miR-139-5p exerts a growth- and invasiveness-suppressing function in human ESCCs, which demonstrates that miR-139-5p is a potential biomarker for early diagnosis and prognosis and is a therapeutic target for ESCC.  相似文献   
53.
54.
55.
Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall‐damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9‐interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co‐immunoprecipitation and affinity capture‐mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum.  相似文献   
56.
57.
An off-line filtering ditch–pond system was designed and constructed to control the small point and runoff pollution at the Wuhan City Zoo, Hubei Province, China. The quantity and quality of wastewater discharge and runoff from 16 rainfall events were measured to test the effectiveness of the off-line treatment train. The results showed that the water quality was improved and high retention rates for water and pollutants were also achieved by the off-line treatment train. In the outflows, the event mean concentrations (EMCs) of TSS, COD, TN, TDN, TP and TDP were reduced by 75%, 50%, 50%, 57%, 74% and 80% compared to the inflows. In 2005, the annual inflow volume in the catchment was 6783 m3 and the water retention rate was 80.1%. The retention rates in the annual loads of TSS, COD, TN and TP came to 86.4%, 85.5%, 83.9% and 82.9%, respectively. Therefore, the off-line filtering ditch–pond system was shown to be an effective and economical measure to control diffuse pollution. It would be worthwhile to extend the off-line treatment train to regions with limited land resources, especially in urban areas.  相似文献   
58.

Introduction

Anti-Ro antibodies can be found in the serum of the majority of patients with Sjögren''s syndrome (SS). Immunization with a 60-kDa Ro peptide has been shown to induce SS-like symptoms in mice. The aim of this study was to investigate factors involved in salivary gland (SG) dysfunction after immunization and to test whether the induction of SS could be improved.

Methods

Ro60 peptide immunization was tested in Balb/c mice, multiple antigenic peptide (MAP)-Ro60 and Pertussis toxin (PTX) were tested in SJL/J mice. In addition, two injection sites were compared in these two strains: the abdominal area and the tailbase. Each group of mice was tested for a loss of SG function, SG lymphocytic infiltration, anti-Ro and anti-La antibody formation, and cytokine production in cultured cells or homogenized SG extracts.

Results

Ro60 peptide immunization in the abdominal area of female Balb/c mice led to impaired SG function, which corresponded with increased Th1 cytokines (IFN-γ and IL-12) systemically and locally in the SG. Moreover, changing the immunization conditions to MAP-Ro60 in the abdominal area, and to lesser extend in the tailbase, also led to impaired SG function in SJL/J mice. As was seen in the Balb/c mice, increased IFN-γ in the SG draining lymph nodes accompanied the SG dysfunction. However, no correlation was observed with anti-MAP-Ro60 antibody titers, and there was no additional effect on disease onset or severity.

Conclusions

Effective induction of salivary gland dysfunction after Ro60 peptide immunization depended on the site of injection. Disease induction was not affected by changing the immunization conditions. However, of interest is that the mechanism of action of Ro60 peptide immunization appears to involve an increase in Th1 cytokines, resulting in the induction of SG dysfunction.  相似文献   
59.
Wang Y  Wang S  Gao YS  Chen Z  Zhou HM  Yan YB 《PloS one》2011,6(9):e24681
Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology.  相似文献   
60.
Zhang  Qi  Li  Yanan  Yin  Chunping  Yu  Jiaxu  Zhao  Juan  Yan  Lirong  Wang  Qiujun 《Neurochemical research》2022,47(6):1751-1764
Neurochemical Research - Postoperative cognitive dysfunction (POCD) remains one of the most common complications following anesthesia and surgery (AS) in the elderly population. Calcium-mediated...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号