首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57890篇
  免费   4598篇
  国内免费   4509篇
  66997篇
  2024年   142篇
  2023年   791篇
  2022年   1858篇
  2021年   3047篇
  2020年   2080篇
  2019年   2504篇
  2018年   2349篇
  2017年   1807篇
  2016年   2548篇
  2015年   3631篇
  2014年   4384篇
  2013年   4439篇
  2012年   5292篇
  2011年   4764篇
  2010年   2883篇
  2009年   2600篇
  2008年   2938篇
  2007年   2635篇
  2006年   2262篇
  2005年   1886篇
  2004年   1510篇
  2003年   1420篇
  2002年   1072篇
  2001年   909篇
  2000年   889篇
  1999年   810篇
  1998年   499篇
  1997年   454篇
  1996年   477篇
  1995年   422篇
  1994年   413篇
  1993年   325篇
  1992年   446篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/μl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.  相似文献   
112.
Wang XT  Yang XL  Lu LQ  Zhang LK  Sun YP  Wang JY  Wu LL 《生理学报》2000,52(6):459-462
The present study was undertaken to explore the mechanism of G protein-mediated signal transduction pathway during endothelin-1 (ET-1) pre-treatment and ischemic preconditioning (IP). Rats were divided into four groups: ET-1, IP, ischaemia-reperfusion (IR) and control groups. ET-1 pre-treatment model was prepared by administrating 0.5 nmol/(L.kg) ET-1 into rat left ventricle, whereas IP model was prepared by ligating the left coronary artery for 5 min followed by 30 min reperfusion. All the animals were subjected to 60 min regional ischaemia and 30 min reperfusion alternately and then parameters of ventricular arrhythmia and expression of cardiac Galphaq/11 and Gialpha2 were measured. The results showed that the scores of ventricular arrhythmia decreased significantly in both ET-1 and IP treated groups as compared with IR group. In comparison with control group, Galphaq/11 increased by 77.8% (P<0.05) and 110.6% (P<0.01) in IP and ET-1 group respectively. Gialpha2 showed no significant difference in IP group, while it decreased by 31.0% (P<0.01) in ET-1 group. In conclusion, activation of G alphaq/11 may be related to the protecting mechanism of ET-1 pre-treatment and IP, whereas Gialpha2 may only play a role in ET-1 pre-treatment.  相似文献   
113.
方迪  楼轶  吴明德  张静  李国庆  杨龙 《微生物学报》2017,57(7):1069-1082
【目的】研究pH信号通路(Pal)在重寄生真菌盾壳霉与寄主核盘菌互作过程中的作用。【方法】从盾壳霉全基因组信息中分析获得了6个Pal相关基因CmpalA、CmpalB、CmpalC、CmpalF、CmpalH和CmpalI的全编码序列和氨基酸序列,通过PEG介导的原生质转化技术获得了CmpalA、CmpalB、CmpalC、CmpalF和CmpalH等5个基因的敲除突变体,分析这些敲除突变体与野生型在菌落培养性状、重寄生能力、降解草酸能力、产生抗真菌物质能力等方面的差异。【结果】与野生型相比,在pH 6–8的条件下,5个Pal相关基因敲除突变体的菌丝生长受到显著抑制,这说明缺失Pal相关基因使盾壳霉对高pH值环境更加敏感。菌核重寄生试验发现5个Pal相关基因敲除突变体的重寄生能力均显著低于野生型。qRT-PCR试验结果表明,敲除Pal相关基因之后导致重寄生相关酶基因Cmch1、Cmg1和Cmsp1的表达量显著降低,而且pH信号通路下游的CmpacC基因的表达量也显著降低。Pal相关基因敲除突变体在pH 6条件下对草酸盐的降解能力显著高于野生型,同时这5个突变体在pH 8条件下产生抗真菌物质能力也显著高于野生型。【结论】pH信号通路相关基因的缺失影响盾壳霉对环境pH的响应。pH信号通路在盾壳霉与核盘菌互作中发挥重要作用,不仅影响盾壳霉的重寄生作用,而且还影响盾壳霉的草酸降解作用和抗真菌作用。  相似文献   
114.
115.
Accumulation of amyloid-β (Aβ) is widely accepted as the key instigator of Alzheimer’s disease (AD). The proposed mechanism is that accumulation of Aβ results in inflammatory responses, oxidative damages, neurofibrillary tangles and, subsequently, neuronal/synaptic dysfunction and neuronal loss. Given the critical role of Aβ in the disease process, the proteases that produce this peptide are obvious targets. The goal would be to develop drugs that can inhibit the activity of these targets. Protease inhibitors have proved very effective for treating other disorders such as AIDS and hypertension. Mutations in APP (amyloid-β precursor protein), which flanks the Aβ sequence, cause early-onset familial AD, and evidence has pointed to the APP-to-Aβ conversion as a possible therapeutic target. Therapies aimed at modifying Aβ-related processes aim higher up the cascade and are therefore more likely to be able to alter the progression of the disease. However, it is not yet fully known whether the increases in Aβ levels are merely a result of earlier events that were already causing the disease.  相似文献   
116.
117.
Summary A DNA segment carrying the full-length, intronless firefly luciferase gene was inserted into the high expression secretion vector, pIN-III -ompA. Upon induction of gene expression, luciferase activity was detected in extracts prepared from periplasmic fractions. The results indicated that the OmpA signal peptide was able to direct secretion of firefly luciferase across the cytoplasmic membrane. This has important implications for using this luciferase as a reporter in studying protein export and targeting.  相似文献   
118.
To synthesize and secrete heterologous proteins in an attenuated Vibrio anguillarum strain for potential multivalent live vaccine development, different antigen-delivery systems based on bacterial-originated secretion signal peptides (SPs) were designed and identified in this work. Four SPs were derived from hemolysin of Escherichia coli, RTX protein of V. cholerae, hemolysin of V. anguillarum, zinc-metalloprotease of V. anguillarum, respectively, and their abilities to support secretion of green fluorescent protein (GFP) in an attenuated V. anguillarum strain MVAV6203 were assayed. Immunodetection of GFP showed that the capability of the tested signal leaders to direct secretion of GFP varied greatly. Although all the four signal peptide-fused GFPs could be expressed correctly and trapped intracellularly in recombinant strains, only the EmpA signal peptide could confer efficient secretion to GFP. For the investigation of its potential application in live bacteria carrier vaccines, a heterologous protein EseB of Edwardsiella tarda was fused to the SP(empA) antigen-delivery system and introduced into the strain MVAV6203. Further analysis of EseB demonstrated that the constructed SP(empA) antigen-delivery system could be used to secrete foreign protein in attenuated V. anguillarum and be available for carrier vaccines development.  相似文献   
119.
We earlier reported that overexpression of glia maturation factor (GMF) in cultured astrocytes enhances the production of brain-derived neurotrophic factor (BDNF). The current study was conducted to find out whether BDNF production is impaired in animals devoid of GMF. To this end GMF-knockout (KO) mice were subjected to exercise and the neurotrophin mRNAs were determined by real-time RT-PCR. Compared to wild-type (WT) mice, there is a decrease in exercise-induced BDNF in the KO mice. The observation was correlated with the finding that, in WT mice, exercise increases GMF expression. The results are consistent with the hypothesis that GMF is necessary for exercise-induction of BDNF, and that GMF may promote neuroprotection through BDNF production.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号