首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24455篇
  免费   1948篇
  国内免费   1787篇
  28190篇
  2024年   55篇
  2023年   301篇
  2022年   794篇
  2021年   1285篇
  2020年   886篇
  2019年   1040篇
  2018年   1031篇
  2017年   748篇
  2016年   1069篇
  2015年   1467篇
  2014年   1723篇
  2013年   1890篇
  2012年   2247篇
  2011年   1925篇
  2010年   1168篇
  2009年   1018篇
  2008年   1201篇
  2007年   1063篇
  2006年   921篇
  2005年   809篇
  2004年   693篇
  2003年   628篇
  2002年   544篇
  2001年   481篇
  2000年   417篇
  1999年   403篇
  1998年   255篇
  1997年   269篇
  1996年   256篇
  1995年   242篇
  1994年   220篇
  1993年   136篇
  1992年   206篇
  1991年   145篇
  1990年   130篇
  1989年   109篇
  1988年   73篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
α-Scorpion toxins are modulators of voltage-gated Na+ channels (Navs), which bind to the receptor site 3 to inhibit the fast inactivation of the channels. MeuNaTxα-12 and MeuNaTxα-13 are two new α-scorpion toxin-like peptides identified by cDNA cloning from the scorpion Mesobuthus eupeus with unknown functions. Here, we report their recombinant production, oxidative refolding, structural and functional features. By in vitro renaturation from bacterial inclusion bodies and further purification through reverse phase high-performance liquid chromatography, we obtained high purity recombinant products with a native-like conformation identified by circular dichroism analysis. Two-electrode voltage clamp recordings on five cloned mammalian Nav subtypes (rNav1.1, rNav1.2, rNav1.4, rNav1.5, and mNav1.6) and the insect counterpart DmNav1, all expressed in Xenopus laevis oocytes, showed that these two peptides inhibited rapid inactivation of the sensitive Na+ channels with significant preference for DmNav1. The half maximal effective concentrations (EC50) of MeuNaTxα-12 and MeuNaTxα-13 for this channel are 19.95 ± 2.99 nM and 65.50 ± 7.28 nM, respectively, showing 45 and 38 folds higher affinities than for rNav1.1, the most sensitive mammalian channel among the five isoforms. Our functional data confirms that these two peptides belong to the α-like scorpion toxin group. A combined analysis of the site 3 sequences and the pharmacological data illuminates the importance of the loop LD4:S5–S6 of the channel in interacting with the toxins whereas affinity variations between MeuNaTxα-12 and MeuNaTxα-13 highlight a key functional role of a cationic side chain at position 28 of MeuNaTxα-12. Successful expression together with structural and functional characterization of these two new α-like scorpion toxins lays basis for further studies of their structure–function relationship.  相似文献   
992.
Luteinizing hormone/choriogonadotropin receptor (LHCGR) gene, potentially related to reproductive traits in chickens, was genotyped by using the Pooled DNA Sequencing, PCR–SSCP and Directing Sequencing techniques. 306 Erlang Mountain chickens form one line (SD03, a line that has been selected for egg quality from a local chicken breed in Sichuan province, China) were genotyped in this study. The associations between LHCGR polymorphisms and six reproductive traits [body weight at first egg (BWAFE), weight of first egg, age at first egg (AFE), number of eggs at 300 days of age (EN), body weight at 300 days of age and egg weight at 300 days of age (EWTA)] were estimated using the one-way analysis of variance method. Results showed that SNP +G4058A and SNP +T4099G of the LHCGR gene were significantly associated with BWFE and AFE. Birds with the AG genotype for the +G4058A SNP exhibited shorter AFE (P < 0.05) and greater EN than those of the GG and AA genotypes, suggesting a balancing selection (overdominance); the effect of allele C in SNP +C3021T and allele C in SNP +T4490C on EN and AFE is additive and may reflect the influence of positive selection. These alleles have promise as genetic markers for future marker-assisted selection.  相似文献   
993.
Mesalamine (5-aminosalicylic acid, 5-ASA) is known to be the first-line medication for treatment of patients with ulcerative colitis. Studies have demonstrated that ulcerative colitis patients treated with 5-ASA have an overall decrease in the risk of developing colorectal carcinoma. However, the mechanisms underlying 5-ASA-mediated anti-inflammatory and anti-cancer effects are yet to be elucidated. Because peroxynitrite has been critically involved in inflammatory stress and carcinogenesis, this study was undertaken to investigate the effects of 5-ASA in peroxynitrite-induced DNA strand breaks, an important event leading to peroxynitrite-elicited cytotoxicity. Incubation of φX-174 plasmid DNA with the peroxynitrite generator 3-morpholinosydnonimine (SIN-1) led to the formation of both single- and double-stranded DNA breaks in a concentration-dependent manner. The presence of 5-ASA at 0.1 and 1.0 mM was found to significantly inhibit SIN-1-induced DNA strand breaks in a concentration-dependent manner. The consumption of oxygen induced by SIN-1 was found to not be affected by 5-ASA at 0.1–50 mM, indicating that 5-ASA at these concentrations is not involved in the auto-oxidation of SIN-1 to form peroxynitrite. It is observed that 5-ASA at 0.1–1 mM showed considerable inhibition of peroxynitrite-mediated luminol chemiluminescence in a dose-dependent fashion, suggesting that 5-ASA is able to directly scavenge the peroxynitrite. Electron paramagnetic resonance (EPR) spectroscopy in combination with spin-trapping experiments, using 5,5-dimethylpyrroline-N-oxide (DMPO) as spin trap resulting in the formation of DMPO-hydroxyl radical adduct from peroxynitrite, and 5-ASA only at higher concentration (1 mM) inhibited the hydroxyl radical adduct while shifting EPR spectra, indicating that 5-ASA at higher concentrations may generate a more stable free radical species rather than acting purely as a hydroxyl radical scavenger. Taken together, these studies demonstrate for the first time that 5-ASA can potently inhibit peroxynitrite-mediated DNA strand breakage, scavenge peroxynitrite, and affect peroxynitrite-mediated radical formation, which may be responsible, at least partially, for its anti-inflammatory and anti-cancer effects.  相似文献   
994.
Mesangial cells (MCs) play a crucial role in maintaining structure and function of glomerular tufts, providing structural support for capillary loops and modulating glomerular filtration by their contractility. MCs apoptosis occurs in experimental diabetic nephropathy, and this correlates with worsening albuminuria. Accumulating evidence suggests that mineralocorticoid receptor (MR) blockade effectively reduces proteinuria in diabetic nephropathy; however, it is rarely known whether spironolactone (SPI), a nonspecific MR antagonist, inhibits apoptosis in MCs under hyperglycaemic conditions. The objectives of this study are to determine the relationship between SPI and apoptosis, and investigate the cell signalling pathway by which SPI inhibits apoptosis. Rat MCs were treated with 30 mM d-glucose and 10?8, 10?7 or 10?6 M aldosterone (ALD) for 24 h. In some experiments, MCs were pretreated with 10?7 M SPI or 10 mM LiCl for 1 h. Apoptosis was evaluated by cell nucleus staining and flow cytometric analyses, and caspase-3 activity was assayed. Gene and protein expression were quantified using quantitative real-time PCR and Western blotting, respectively. SPI directly inhibited high glucose and ALD-induced MCs apoptosis in a caspase-dependent manner. Importantly, SPI inhibited MCs apoptosis via the Wnt signalling pathway. SPI promoted activation of the Wnt signalling pathway in MCs, leading to upregulation of Wnt4 and Wnt5a mRNA expression, decreased GSK-3β protein expression and increased β-catenin protein expression. As a conclusion, this study suggests that SPI may inhibit apoptosis in MCs during hyperglycaemic conditions via the Wnt signalling pathway. Blockade of the ALD system may represent a novel therapeutic strategy to prevent MCs injury under hyperglycaemic conditions.  相似文献   
995.
Prostate cancer is a lethal cancer for the invasion and metastasis in its earlier period. P53 is a tumor suppressor gene which plays a critical role on safeguarding the integrity of genome. However, loss of P53 facilitates or inhibits the invasion and metastasis of tumor is still suspended. In this study, we are going to explain whether loss of P53 affect the invasion and metastasis of prostate cancer cells. To explore whether loss of P53 influences the invasion and metastasis ability of prostate cancer cells, we first compared the invasion ability of si-P53 treated cells and control cells by wound healing, transwell assay, and adhesion assay. We next tested the activity of MMP-2, MMP-9, and MMP-14 by western blot and gelatin zymography. Moreover, we employed WB and IF to identify the EMT containing E-cad, N-cad, vimentin, etc. We also examined the expression of cortactin, cytoskeleton, and paxillin by immunofluorescence, and tested the expression of ERK and JNK by WB. Finally, we applied WB to detect the expression of FAK, Src, and the phosphorylation of them to elucidate the mechanism of si-P53 influencing invasion and metastasis. According to the inhibition rate of si-P53, we choose the optimized volume of si-P53. With the volume, we compare the invasion and metastasis ability of Du145 and si-P53 treated cells. We find si-P53 promotes the invasion and metastasis in prostate cancer cells, increases the expression and activity of MMP-2/9 and MMP-14. Also, si-P53 promotes EMT and cytoskeleton rearrangement. Further analyses explain that this effect is associated with FAK-Src signaling pathway. Loss of P53 promotes the invasion and metastasis ability of prostate cancer cells and the mechanism is correlated with FAK-Src signaling pathway. P53 is involved in the context of invasion and metastasis.  相似文献   
996.
The effect of ginsenoside Rg1 (Rg1) on hepatic damage caused by concanavalin A (Con A) has not been fully elucidated. This study was designed to evaluate the protective effect of Rg1 on Con A-induced hepatitis in mice and explore the potential mechanisms of this effect. C57BL/6 mice were divided randomly into the following four experimental groups: phosphate-buffered saline group, Rg1 group, Con A group, Con A + Rg1 group. Mice received Rg1 (20 mg/kg) 3 h before intravenous administration of Con A (15 mg/kg). Levels of alanine transaminase, aspartate transaminase and cytokine production were measured, the amount of phosphorylated IκBα and p65 were tested, the numbers of CD4+ and CD8+ T lymphocytes infiltrated in the blood, spleen and liver were calculated, intercellular adhesion molecule-1 (ICAM-1) and interferon-inducible chemokine-10 (CXCL-10) levels were measured and histological examination of the livers was conducted. Pretreatment with Rg1 markedly reduced the elevated levels of serum aminotransferase, ameliorated liver damage and suppressed proinflammatory cytokines secretion via inhibition NF-κB activity following Con A injection of mice. Furthermore, Rg1 administration reduced ICAM-1 and CXCL-10 mRNA expression in the liver as well as the number of CD4+ and CD8+ T lymphocytes infiltrating in the liver. Rg1 reduced the incidence of liver damage through inhibition of the proinflammatory response and suppressed the recruitment of CD4+ and CD8+ T lymphocytes to the liver. These data indicate that Rg1 represents a novel agent for the treatment of T lymphocyte-dependent liver injury.  相似文献   
997.
998.
We previously reported that AngiotensinII receptor blocker effectively inhibited TGF-β1-mediated epithelial-to-mesenchymal transition progress through regulating Smad7. However, the underlying mechanism by which Smad7 exerted in regulating MMP9 and fibrogenic response has not been fully elucidated. In the current study, we proved that NADPH p47phox-dependent reactive oxygen species (ROS) production contributed to MMP9 activation and collagen expression, which was suppressed by transfecting pcDNA3–Smad7 in cardiac fibroblasts. The effect of Smad7 overexpression on MMP9 activity and collagen expression was further reversed by adding H2O2 (10 μmol/L). In contrast, knockdown of Smad7 caused the enhanced collagen synthesis in cardiac fibroblasts, which was also reversed by treating cells with a ROS inhibitor, YCG063 (2 μmol/L). Further investigation showed that Smad7 regulated NADPH-mediated ROS production through activating Heme oxygenase-1 (HO-1). Meanwhile, the intercellular level of bilirubin (product of hemin) and nitric oxide (NO) in cell supernatant were not significantly increased in cells treated with AngII or transfected with Smad7. Knockdown of HO-1 in Smad7-overexpressed cardiac fibroblasts or cells pretreated with SnPP IX, a competitive inhibitor of HO-1 activity, resulted in increased productions of ROS and NADPH p47phox, and abolished the inhibitory effects of Smad7 on MMP9 activity and collagen expression. Our results indicated that HO-1 might be critically involved in Smad7-mediated regulation of MMP9 activity and fibrogenic genes expression via antagonizing the enhanced myocardial oxidative stress.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号