首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8347篇
  免费   575篇
  国内免费   106篇
  2021年   158篇
  2020年   73篇
  2019年   95篇
  2018年   115篇
  2017年   92篇
  2016年   139篇
  2015年   209篇
  2014年   253篇
  2013年   409篇
  2012年   448篇
  2011年   434篇
  2010年   259篇
  2009年   247篇
  2008年   305篇
  2007年   325篇
  2006年   314篇
  2005年   282篇
  2004年   249篇
  2003年   245篇
  2002年   258篇
  2001年   195篇
  2000年   200篇
  1999年   170篇
  1998年   82篇
  1997年   85篇
  1996年   80篇
  1995年   76篇
  1994年   74篇
  1993年   72篇
  1992年   178篇
  1991年   159篇
  1990年   159篇
  1989年   145篇
  1988年   124篇
  1987年   144篇
  1986年   123篇
  1985年   155篇
  1984年   147篇
  1983年   145篇
  1982年   110篇
  1981年   92篇
  1980年   70篇
  1979年   136篇
  1978年   95篇
  1977年   100篇
  1976年   76篇
  1975年   90篇
  1974年   91篇
  1973年   85篇
  1972年   96篇
排序方式: 共有9028条查询结果,搜索用时 296 毫秒
201.
Bcl-2 blocks p53-dependent apoptosis.   总被引:36,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   
202.
Waardenburg syndrome (WS) is a dominantly inherited and clinically variable syndrome of deafness, pigmentary changes, and distinctive facial features. Clinically, WS type I (WS1) is differentiated from WS type II (WS2) by the high frequency of dystopia canthorum in the family. In some families, WS is caused by mutations in the PAX3 gene on chromosome 2q. We have typed microsatellite markers within and flanking PAX3 in 41 WS1 kindreds and 26 WS2 kindreds in order to estimate the proportion of families with probable mutations in PAX3 and to study the relationship between phenotypic and genotypic heterogeneity. Evaluation of heterogeneity in location scores obtained by multilocus analysis indicated that WS is linked to PAX3 in 60% of all WS families and in 100% of WS1 families. None of the WS2 families were linked. In those families in which equivocal lod scores (between −2 and +1) were found, PAX3 mutations have been identified in 5 of the 15 WS1 families but in none of the 4 WS2 families. Although preliminary studies do not suggest any association between the phenotype and the molecular pathology in 20 families with known PAX3 mutations and in four patients with chromosomal abnormalities in the vicinity of PAX3, the presence of dystopia in multiple family members is a reliable indicator for identifying families likely to have a defect in PAX3.  相似文献   
203.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   
204.
Introduction of well-programmed nicks and gaps and the associated DNA repair activity in the genome at the pachytene interval is a characteristic feature of the meiotic prophase in organisms as varied as lilium and mouse. In the present study we have shown that the DNA synthetic activity in rat pachytene spermatocytes is insensitive to aphidicolin, a specific inhibitor of DNA polymerase , and , suggesting DNA -polymerase-mediated repair synthesis in these cells. We have developed a novel approach for the isolation of the DNA repair sites by combining two independent techniques. Following incorporation of BrdUrd into pachytene spermatocytes in the presence of aphidicolin, the repair sites were released as ssDNA fragments by treatment of nuclei with 30 mM NaOH. Subsequently, the BrdUrd containing ssDNA fragments were specifically isolated using polyclonal anti-BrdUrd antibodies. The DNA fragments released were of two size classes, namely 4–7S (major) and 9–12S (minor) and constituted approximately 1.75% of the pachytene genomic DNA. These DNA repair fragments were distinct from Okazaki fragments and other replicative intermediates isolated from rat bone marrow cells as evidenced by (a) their different size distribution and (b) little cross-hybridization. Southern hybridization of restriction enzyme digests of rat genomic DNA with probes made against BrdUrd-ssDNA fragments revealed that although the repair sites were distributed throughout the genome, strong hybridization signals were observed in EcoRI, (1.3 kb and 2.4 kb), BamH1 (9 kb) and HindIII (5 kb) repetetive DNA fragments. The EcoRI 1.3 kb family were cloned into M13 mp19, and a repair positive (1.3 A) and a repair negative (1.3 B) were identified and sequenced. The repair positive clone contained (a) (CA)22 repeat, (b) a (CAGA)6 repeat and (c) 4 sequences sharing high homology with various hypervariable minisatellite (HVMS) sequences. One of the HVMS sequence contained a GGCAGG motif known to be responsible for germline instability. The repair negative clone had (a) (CA)6 repeat and (b) a HVMS like sequence without GGCAGG. The significance of these motifs and their relevance to the events of DNA metabolism at pachytene interval have been discussed.  相似文献   
205.
Real time B-mode ultrasound was used to detect and monitor the early conceptus, its growth and its anatomical features in 26 buffalo between Days 18 and 62 of gestation. The buffalo were artificially inseminated, and the conceptuses were examined on alternate days begining on Day 18. The embryonic vesicle and the embryo proper within the vesicle was first visible in 12 of the buffalo on mean Day (+/- SD) 19.00+/-2.1 and Day 19.0+/-1.69, respectively. The heartbeat of the embryo proper could be detected on Day 29.6+/-1.57. The heart rate of 203.8 +/- 9.0 beats per minute on the first day of detection decreased to 150 beats per minute on Day 62. The allantois, amnion, fore limbs, spinal cord and hind limbs were first identified on Day 30.0+/-1.14, Day 33.4+/-1.64, Day 34.6+/-1.34, Day 35.8+/-2.52 and Day 36.8+/-2.34, respectively. The optic area was first distinguished on Day 38.2+/-2.39. Split hooves, fetal movement, ribs and vertebra were identified on Day 46.0+/-2.64, Day 49.4+/-2.31 and Day 59.8+/-2.39, respectively. The mean length of the embryo proper was 4.2 mm on Day 19 which later increased to 53.6 +/- 2.1 mm on Day 62.  相似文献   
206.
Summary The chirospecific conversions of D-glucosamine hydrochloride and D-mannosamine hydrochloride to the configurationally stable L and D isomers of N-t-butyloxycarbonylserinal were carried out byt-butylcarbonylation followed by sodium borohydride reduction and sodium meta-periodate oxidation. Reaction of the L and D aldehydes with the Wittig reagent prepared from 4-chlorobenzyltriphenylphosphonium chloride and butyl lithium followed by catalytic hydrogenation, Jones oxidation and salt formation with dicyclohexylamine gave the DCHA salts of the D and L isomers ofp-chlorohomophenylalanine N-t-Boc in high enatiomeric excess. The optical purity of the title compounds was established by hydrolysis to the respective free amino acids, followed by chiral derivatization and HPLC analysis.This was presented at the Fifth International Kyoto Conference on new Aspects of Organic Chemistry, Kyoto, Japan, November 11–15, 1991. Abstract #GO-13.  相似文献   
207.
The conformation of the heptasaccharide Man-1,6-(Man-1,3)(Xyl-ß1,2)-Man-ß,4-GlcNAc2-ß1,4-(L-Fuc-1,3)-GlcNAc1,the carbohydrate moiety of Erythrina corallodendron lectin (EcorL),the hexasaccharide Man-1,6-(Man-1,3) (GlcNAc-ß1,4)-Man-ß1,4-GlcNAc-ß1,4-GlcNAcand their disaccharide fragments have been studied by moleculardynamics (MD) simulations for 1000 ps with different initialconformations. In the isolated heptasaccharide, the most frequentlyaccessed conformation during MD has a value of 180° aroundMan-1,6-Man linkage. This conformation is stabilized by theformation of a hydrogen bond between the carbonyl oxygen ofGlcNAc2 with the O3/O4 hydroxyls of the 1,6-linked mannose residue.The conformation of the heptasaccharide found in the crystalstructure of the EcorL-lactose complex (Shaanan et al., Science,254, 862, 1991), that has a value of 76° around Man-1,6-Manlinkage, is accessed, although less frequently, during MD ofthe isolated oligosaccharide. The ,, = 58°,–134°,–60°conformation around Man-1,6-Man fragment observed in the crystalstructure of the Lathyrus ochnrs lectin complexed with a biantennaryoctasaccharide (Table I in Homans,S.W., Glycobiology, 3, 551,1993) has also been accessed in the present MD simulations.These values for the 1,6-linkage, which are observed in theprotein-carbohydrate crystal structures and are accessed inthe MD simulations, though occasionally, have not been predictedfrom NMR studies. Furthermore, these different values of leadto significantly different orientations of the 1,6-arm for thesame value of . This contrasts with the earlier predictionsthat only different values of can bring about significant changesin the orientation of the 1,6-arm. The MD simulations also showthat the effects of bisecting GlcNAc or ß1,2-xyloseare very similar on the 1,3-arm and slightly different on the1,6-arm. bisecting GlcNAc carbohydrates glycoprotein lectinsaccharide complex  相似文献   
208.
Conformations of several high-mannose-type oligosaccharidesthat are generated during the biosynthetic degradation of Man9GlcNAc2to Man5GlcNAc2 have been studied by molecular dynamics (MD).Simulations were performed on NCI-FCRDC's Cray Y-MP 8D/8128supercomputer using Biosym's CVFF force field for 1000 Ps withdifferent initial conformations. The conformations of the two1,3- and the two 1,6-linkages in each oligomannose were different,suggesting that deriving oligosaccharide conformations basedon the conformational preferences of the constituent disaccharidefragments will not always yield correct results. Unlike otheroligomannoses, Man9GlcNAc2 appears to take more than one distinctconformation around the core 1,6-linkage. These various conformationsmay play an important role in determining the processing pathways.Using the data on the preferred conformations of these oligomannosesand the available experimental results, possible pathways forprocessing Man9GlcNAc2 to Man5GlcNAc2 by 1,2-linkage-specificmannosidases have been proposed. Conformational analysis ofMan5GlcNAc2 indicates that the addition of ß1,2-GlcNActo the 1,3-linked core mannose, besides serving as a prerequisitefor mannosidase II action as suggested earlier, may also preventthe removal of 1,3-mannose. The MD simulations also suggestthat the processing of the precursor oligosaccharide duringAsn-linked complex and hybrid glycan biosynthesis proceeds ina well-defined pathway involving more than one 1,2-linkage-specificmannosidase. Knowledge of the conformation of the processingintermediates obtained from the present study can be used todesign highly specific substrate analogues to inhibit a particularmannosidase, thereby blocking one processing pathway withoutinterfering with the others. carbohydrates conformation glycosidase inhibitors mannosidase oligosaccharide processing  相似文献   
209.
We describe a male infant with severe mental retardation and autism with a duplication of the short arm of the X chromosome. Chromosome painting confirmed the origin of this X duplication. Molecular cytogenetic analysis with fluorescence in situ hybridization (FISH) identified one copy of the zinc finger protein on the X chromosome (ZFX) and two copies of the steroid sulfatase gene (STS), further delineating the breakpoints. Based on cytogenetic and molecular comparisons of cases from the literature of sex-reversal in dup(X),Y patients and our patient, we suggest that a possible secondary sexinfluencing gene involved in the regulation of sex determination or testis morphogenesis is present at the distal Xp21.1 to p21.2 region.  相似文献   
210.
The topological disposition of Wolfgram proteins (WP) and their relationship with 2, 3-cyclic nucleotide 3-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W>14KDa were detected on the gels. Therefore protein fragments of WP with M.W<14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号