全文获取类型
收费全文 | 11393篇 |
免费 | 924篇 |
国内免费 | 786篇 |
专业分类
13103篇 |
出版年
2024年 | 20篇 |
2023年 | 213篇 |
2022年 | 396篇 |
2021年 | 632篇 |
2020年 | 395篇 |
2019年 | 515篇 |
2018年 | 536篇 |
2017年 | 341篇 |
2016年 | 509篇 |
2015年 | 714篇 |
2014年 | 796篇 |
2013年 | 916篇 |
2012年 | 1079篇 |
2011年 | 938篇 |
2010年 | 576篇 |
2009年 | 502篇 |
2008年 | 538篇 |
2007年 | 501篇 |
2006年 | 432篇 |
2005年 | 369篇 |
2004年 | 305篇 |
2003年 | 230篇 |
2002年 | 189篇 |
2001年 | 204篇 |
2000年 | 172篇 |
1999年 | 176篇 |
1998年 | 101篇 |
1997年 | 124篇 |
1996年 | 105篇 |
1995年 | 87篇 |
1994年 | 91篇 |
1993年 | 48篇 |
1992年 | 74篇 |
1991年 | 55篇 |
1990年 | 44篇 |
1989年 | 46篇 |
1988年 | 38篇 |
1987年 | 27篇 |
1986年 | 19篇 |
1985年 | 22篇 |
1984年 | 12篇 |
1983年 | 9篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
151.
Wang PC Ran XH Chen R Luo HR Ma QY Liu YQ Hu JM Huang SZ Jiang HZ Chen ZQ Zhou J Zhao YX 《化学与生物多样性》2011,8(10):1908-1913
Two new guaiane-type sesquiterpenoids, valerol A (1) and kessyl 3-acetate (2), together with nine known compounds, valeracetate (3), anismol A (4), orientalol C (5), spatulenol (6), 4α,10α-epoxyaromadendrane (7), (+)-8-hydroxypinoresinol (8), pinorespiol (9), pinoresinol 4-O-β-D-glucopyranoside (10), and 8-hydroxypinoresinol 4'-O-β-D-glucopyranoside (11) were isolated from the roots of Valeriana officinalis. The structures and relative configurations of 1 and 2 were elucidated on the basis of spectroscopic methods (1D- and 2D-NMR, MS, UV, and IR). These compounds were evaluated for inhibitory activity on acetylcholinesterase (AChE) and enhancing activity on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells. 相似文献
152.
Genming Luo Yongbiao Wang Hao Yang Thomas J. Algeo Lee R. Kump Junhua Huang Shucheng Xie 《Palaeogeography, Palaeoclimatology, Palaeoecology》2011,299(1-2):70-82
Large perturbations to the global carbon cycle occurred during the Permian–Triassic boundary mass extinction, the largest extinction event of the Phanerozoic Eon (542 Ma to present). Controversy concerning the pattern and mechanism of variations in the marine carbonate carbon isotope record of the Permian–Triassic crisis interval (PTCI) and their relationship to the marine mass extinction has not been resolved to date. Herein, high-resolution carbonate carbon isotope profiles (δ13Ccarb), accompanied by lithofacies, were generated for four sections with microbialite (Taiping, Zuodeng, Cili, and Chongyang) in South China to better constrain patterns and controls on δ13Ccarb variation in the PTCI and to test hypotheses about the temporal relationship between perturbations to the global carbon cycle and the marine mass extinction event. All four study sections exhibit a stepwise negative shift in δ13Ccarb during the Late Permian–Early Triassic, with the shift preceding the end-Permian crisis being larger (> 3‰) than that following it (1–2‰). The pre-crisis shifts in δ13Ccarb are widely correlatable and, hence, represent perturbations to the global carbon cycle. The comparatively smaller shifts following the crisis demonstrate that the marine mass extinction event itself had at most limited influence on the global carbon cycle, and that both Late Permian δ13Ccarb shifts and the mass extinction must be attributed to some other cause. Their origin cannot be uniquely determined from C-isotopic data alone but appears to be most compatible with a mechanism based on episodic volcanism in combination with collapse of terrestrial ecosystems and soil erosion. 相似文献
153.
Mestre O Luo T Dos Vultos T Kremer K Murray A Namouchi A Jackson C Rauzier J Bifani P Warren R Rasolofo V Mei J Gao Q Gicquel B 《PloS one》2011,6(1):e16020
Background
The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.Methodology/Principal Findings
A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs). A recent Beijing genotype (Bmyc10), which included 60% of strains from distinct parts of the world, appeared to be predominant.Conclusions/Significance
We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family. 相似文献154.
155.
Zhou Xin Yang Zhi-Bo Han Yue Ru Ji You Wei Wang Lu Liang Ying Chi Shao Guang Yang Li Na Li Wei Feng Luo Jian Ping Li Dan Dan Chen Wen Jing Du Xiao Cang Cao Guang Sheng Zhuo Tao Wang Zhong Chao Han 《PloS one》2013,8(3)
Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106+cells and CD106−cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106+CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106+CV-MSCs expressed more cytokines than CD106−CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs. 相似文献
156.
157.
158.
Dan‐Ju Luo Qiong Feng Zhi‐Hao Wang Dong‐Sheng Sun Qun Wang Jian‐Zhi Wang Gong‐Ping Liu 《Journal of neurochemistry》2014,130(6):816-825
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down‐regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase‐3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl‐xl and Bcl‐2 protein levels. Over‐expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen‐activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over‐expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA‐induced cell death.
159.
Meiyao Wang Martin Misakian Hua-Jun He Peter Bajcsy Fatima Abbasi Jeffrey M Davis Kenneth D Cole Illarion V Turko Lili Wang 《Clinical proteomics》2014,11(1)
Background
In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells.Method
Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry.Results
The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 105 and (0.85 ± 0.11) × 105, respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC.Conclusion
Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.Electronic supplementary material
The online version of this article (doi:10.1186/1559-0275-11-43) contains supplementary material, which is available to authorized users. 相似文献160.
The developing central nervous system is a primary target of ethanol toxicity. The teratogenic effect of ethanol may result from its action on prostaglandins. Prostaglandins are generated through the release of arachidonic acid (AA) by the action of cytosolic phospholipase A(2) (cPLA(2)) on membrane-bound phospholipids and the catalytic conversion of AA to prostaglandin E(2) (PGE(2)) by cyclo-oxygenase (COX). COX is expressed in two isoforms, constitutive COX1 and inducible COX2. Cultured astrocytes and neurons from immature cerebral cortex were used as in vitro models to investigate the effect of ethanol on PGE(2) synthesis. In both cell types, neither the activity nor the expression of cPLA(2) was affected by ethanol. PGE(2) was synthesized by astrocytes and neurons. Ethanol (200-400 mg/dL for 24 h) significantly increased PGE(2) production in both cell types and the ethanol-induced increase in PGE(2) accumulation in astrocytes was significantly greater than in neurons. These increases resulted from the effects of ethanol on COX. Overall COX activity was up-regulated by ethanol in astrocytes and neurons, and indomethacin, a nonselective blocker for COX, eliminated the ethanol-induced increases of COX activity in both cell types. Increased COX activity in astrocytes resulted from an increase in COX2 expression. NS-398, a selective COX2 blocker, completely inhibited ethanol-induced alterations in COX activity. In neurons, however, ethanol had a direct effect on COX activity in the absence of a change in COX expression. NS-398 only partially blocked ethanol-induced increases in neuronal COX activity. Thus, astrocytes are a primary target of ethanol and ethanol-induced increases in glial PGE(2) synthesis are mediated by COX, principally COX2. Ethanol toxicity may be mediated through PGE(2) in immature cortical cells. 相似文献