首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5226篇
  免费   400篇
  国内免费   259篇
  5885篇
  2024年   8篇
  2023年   71篇
  2022年   125篇
  2021年   232篇
  2020年   178篇
  2019年   215篇
  2018年   196篇
  2017年   175篇
  2016年   279篇
  2015年   318篇
  2014年   357篇
  2013年   415篇
  2012年   477篇
  2011年   424篇
  2010年   252篇
  2009年   201篇
  2008年   286篇
  2007年   225篇
  2006年   194篇
  2005年   172篇
  2004年   182篇
  2003年   132篇
  2002年   141篇
  2001年   82篇
  2000年   48篇
  1999年   73篇
  1998年   48篇
  1997年   54篇
  1996年   38篇
  1995年   29篇
  1994年   32篇
  1993年   21篇
  1992年   33篇
  1991年   12篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   19篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1970年   3篇
排序方式: 共有5885条查询结果,搜索用时 0 毫秒
991.
上海地区番茄黄化曲叶病毒病的鉴定及嫁接接种法研究   总被引:4,自引:0,他引:4  
番茄黄化曲叶病毒(tomato yellow leafcurl virus,TYLCV)是一种由烟粉虱(Bemisia tabaci)和嫁接传播的双生病毒,在热带、亚热带地区给番茄生产造成严重威胁.根据番茄黄化曲叶病毒的保守序列设计一对引物,运用PCR技术从上海地区的感病番茄中扩增出一条575bp的特异带,而健康植株无此带.测序表明该序列与番茄黄化曲叶病毒具有极高的同源性(97%~99%).将健康接穗嫁接到感染番茄黄化曲叶病毒的番茄砧木上,间隔15 d和30 d,分别提取接穗的DNA,并用PCR法检测病毒,发现嫁接15 d后在部分接穗中检测到TYLCV病毒,嫁接30 d后在所有的接穗中均检测到病毒,因此,嫁接法可以作为番茄黄化曲叶病毒病的接种鉴定方法.  相似文献   
992.
Amur tiger is the largest subspecies of tiger in the world and his conservation has also received much attention. In this study, we isolated and characterized twenty-one tri- and tetranucleotide microsatellite markers from this species. The number of alleles for each locus ranged from two to nine in a group of 60 individuals and the observed and expected heterozygosities were 0.333–0.917 and 0.302–0.822, respectively. The overall discrimination power and exclusion probabilities in parentage and paternity testing for these markers were 1.00, 0.9947 and 0.9999, respectively, indicating high-resolution power of microsatellite markers.  相似文献   
993.
High-throughput screening of the Merck sample collection identified benzodiazepinone tetralin-spirohydantoin 1 as a CGRP receptor antagonist with micromolar activity. Comparing the structure of 1 with those of earlier peptide-based antagonists such as BIBN 4096 BS, a key hydrogen bond donor-acceptor pharmacophore was hypothesized. Subsequent structure activity studies supported this hypothesis and led to benzodiazepinone piperidinyldihydroquinazolinone 7, CGRP receptor K(i)=44nM and IC(50)=38nM. Compound 7 was orally bioavailabile in rats and is a lead in the development of orally bioavailable CGRP antagonists for the treatment of migraine.  相似文献   
994.
The design, synthesis, and activity of novel and selective small molecule antagonists of the CC chemokine receptor-4 (CCR4) are presented. Compound 8c was efficacious in a murine allergic inflammation model (ED(50) 30 mg/kg).  相似文献   
995.
A novel pyridothiophene inhibitor of PTP1B was discovered by rational screening of phosphotyrosine mimics at high micromolar concentrations. The potency of this lead compound has been improved significantly by medicinal chemistry guided by X-ray crystallography and molecular modeling. Excellent consistency has been observed between structure-activity relationships and structural information from PTP1B-inhibitor complexes.  相似文献   
996.
The ratio of the levels of pro-survival and pro-apoptotic members of the Bcl-2 protein family is thought to be an important regulatory factor for determining the sensitivity of the mammalian cells to apoptotic stimuli. High levels of expression of pro-survival members such as Bcl(XL) in human cancers were frequently found to be a good prognostic indicator predicting poor response to chemotherapy. The pro-survival members of the Bcl-2 family mediate their effects through heterodimerization with the BH3 region of the pro-apoptotic members. Structural analyses of the binding complex of the BH3 peptide and Bcl(XL) showed that a hydrophobic groove termed the BH3 binding cleft is the docking site for the BH3 region. Chemical mimetics of the BH3 region such as BH3I-1 that target the BH3 binding cleft indeed exhibit pro-apoptotic activities. Chelerythrine (CHE) and sanguinarine (SAN) are natural benzophenanthridine alkaloids that are structurally homologous to each other. CHE was previously identified as an inhibitor of Bcl(XL) function from a high-throughput screen of natural products, but its mode of interaction with Bcl(XL) is not known. By determining the effect of site-directed mutagenesis on ligand binding and using saturation transfer difference (STD) NMR experiments, we have verified locations of these docked ligands. Surprisingly, CHE and SAN bind separately at the BH groove and BH1 region of Bcl(XL) respectively, different from the BH3 binding cleft where other known inhibitors of Bcl(XL) target. Interestingly, certain residues on the flexible loop between helices alpha1 and alpha2 of Bcl(XL) are also perturbed upon CHE, but not SAN or BH3I-1 binding. Although CHE and SAN are similarly effective as BH3I-1 in displacing bound BH3 peptide, they are much more effective in inducing apoptosis, raising the possibility that CHE and SAN might be able to antagonize other pro-survival mechanisms in addition to the one that involves BH3 region binding.  相似文献   
997.
We investigated the effects of the initial stiffness of a three-dimensional elastomer scaffold--highly porous poly(glycerol sebacate)--on functional assembly of cardiomyocytes cultured with perfusion for 8 days. The polymer elasticity varied with the extent of polymer cross-links, resulting in three different stiffness groups, with compressive modulus of 2.35 ± 0.03 (low), 5.28 ± 0.36 (medium), and 5.99 ± 0.40 (high) kPa. Laminin coating improved the efficiency of cell seeding (from 59 ± 15 to 90 ± 21%), resulting in markedly increased final cell density, construct contractility, and matrix deposition, likely because of enhanced cell interaction and spreading on scaffold surfaces. Compact tissue was formed in the low and medium stiffness groups, but not in the high stiffness group. In particular, the low stiffness group exhibited the greatest contraction amplitude in response to electric field pacing, and had the highest compressive modulus at the end of culture. A mathematical model was developed to establish a correlation between the contractile amplitude and the cell distribution within the scaffold. Taken together, our findings suggest that the contractile function of engineered cardiac constructs positively correlates with low compressive stiffness of the scaffold.  相似文献   
998.
Cell therapy is a promising treatment for diseases that are caused by cell degeneration or death. The cells for clinical transplantation are usually obtained by culturing healthy allogeneic or exogenous tissue invitro. However, for diseases of the eye, obtaining the adequate number of cells for clinical transplantation is difficult due to the small size of tissue donors and the frequent needs of long-term amplification of cells in vitro, which results in low cell viability after transplantation. In addition, the transplanted cells often develop fibrosis or degrade and have very low survival. Embryonic stem cells(ESCs) and induced pluripotent stem cells(i PS) are also promising candidates for cell therapy. Unfortunately, the differentiation of ESCs can bring immune rejection, tumorigenicity and undesired differentiated cells, limiting its clinical application. Although i PS cells can avoid the risk of immune rejection caused by ES cell differentiation post-transplantation, the low conversion rate, the risk of tumor formation and the potentially unpredictable biological changes that could occur through genetic manipulation hinder its clinical application. Thus, the desired clinical effect of cell therapy is impaired by these factors. Recent research findings recognize that the reason for low survival of the implanted cells not only depends on the seeded cells, but also on the cell microenvironment, which determines the cell survival, proliferation and even reverse differentiation. When used for cell therapy, the transplanted cells need a specific three-dimensional structure to anchor and specific extra cellular matrix components in addition to relevant cytokine signaling to transfer the required information to support their growth. These structures present in the matrix in which the stem cells reside are known as the stem cell microenvironment. The microenvironment interaction with the stem cells provides the necessary homeostasis for cell maintenance and growth. A large number of studies suggest that to explore how to reconstruct the stem cell microenvironment and strengthen its combination with the transplanted cells are key steps to successful cell therapy. In this review, we will describe the interactions of the stem cell microenvironment with the stem cells, discuss the importance of the stem cell microenvironment for cell-based therapy in ocular diseases, and introduce the progress of stem cell-basedtherapy for ocular diseases.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号