首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9204篇
  免费   881篇
  国内免费   984篇
  2024年   18篇
  2023年   56篇
  2022年   157篇
  2021年   334篇
  2020年   274篇
  2019年   372篇
  2018年   380篇
  2017年   307篇
  2016年   398篇
  2015年   581篇
  2014年   668篇
  2013年   730篇
  2012年   847篇
  2011年   814篇
  2010年   587篇
  2009年   568篇
  2008年   595篇
  2007年   536篇
  2006年   444篇
  2005年   412篇
  2004年   337篇
  2003年   337篇
  2002年   305篇
  2001年   209篇
  2000年   134篇
  1999年   113篇
  1998年   87篇
  1997年   74篇
  1996年   47篇
  1995年   44篇
  1994年   46篇
  1993年   35篇
  1992年   49篇
  1991年   31篇
  1990年   22篇
  1989年   28篇
  1988年   21篇
  1987年   15篇
  1986年   15篇
  1985年   15篇
  1984年   5篇
  1983年   7篇
  1982年   7篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
In eukaryotes, autophagy helps maintain cellular homeostasis by degrading and recycling cytoplasmic materials via a tightly regulated pathway.Over the past few decades, significant progress has been made towards understanding the physiological functions and molecular regulation of autophagy in plant cells. Increasing evidence indicates that autophagy is essential for plant responses to several developmental and environmental cues, functioning in diverse processes such as senescence, male fertility, root meristem maintenance, responses to nutrient starvation,and biotic and abiotic stress. Recent studies have demonstrated that, similar to nonplant systems,the modulation of core proteins in the plant autophagy machinery by posttranslational modifications such as phosphorylation, ubiquitination,lipidation, S-sulfhydration, S-nitrosylation, and acetylation is widely involved in the initiation and progression of autophagy. Here, we provide an overview of the physiological roles and posttranslational regulation of autophagy in plants.  相似文献   
132.
Potassium and phosphorus transport and signaling in plants   总被引:2,自引:0,他引:2  
Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.  相似文献   
133.
为克隆杧果(Mangifera indica L.)蔗糖合成酶基因序列,预测其编码蛋白特性,阐明其在果实发育过程中的表达规律和作用.本研究采用同源克隆法和RACE技术克隆了1个编码蔗糖合成酶基因的全长cDNA,命名为MiSS,其cDNA全长2110 bp,开放阅读框为1455 bp,编码484个氨基酸,相对分子量为55.3 kD,理论等电点为6.08.系统进化分析显示,MiSS基因编码的氨基酸序列与温州蜜柑(Citrus unshiu)、荔枝(Litchi chinensis)、龙眼(Dimocarpus longan)氨基酸序列一致性为90%~93%.RT-qPCR分析显示,MiSS基因表达量呈现先上升后下降的趋势,且果实发育各时期果皮内MiSS基因表达量均显著高于果肉,综合分析MiSS基因可能与淀粉的合成密切相关.本研究为进一步了解MiSS基因在杧果蔗糖代谢过程中的作用以及从分子角度阐明植物生长调节剂对杧果蔗糖代谢的影响机理奠定了理论和技术基础.  相似文献   
134.
135.
Compromised TLR-mediated chronic inflammation contributes to bacterial infection-caused chronic suppurative otitis media, but the mechanisms are unclear. The present study examined the expression status of nuclear erythroid 2-related factor 2 (Nrf2) and TLRs in human middle-ear mucosae tissues collected from patients with chronic suppurative otitis media, chronic otitis media and non-otitis media, and found that Nrf2 was high-expressed, whereas TLR4, instead of other TLRs, was low expressed in chronic suppurative otitis media compared to chronic otitis media and non-chronic otitis media groups. Consistently, inflammatory cytokines were significantly up-regulated in the chronic suppurative otitis media group, instead of the chronic otitis media and non-chronic otitis media groups. Next, LPS-induced acute otitis media and chronic suppurative otitis media models in mice were established, and high levels of inflammatory cytokines were sustained in the mucosae tissues of chronic suppurative otitis media mice compared to the non-otitis media and acute otitis media groups. Interestingly, continuous low-dose LPS stimulation promoted Nrf2 expression, but decreased TLR4 levels in chronic suppurative otitis media mice mucosae. In addition, knock-down of Nrf2 increased TLR4 expression levels in chronic suppurative otitis media mice, and both Nrf2 ablation and TLR4 overexpression inhibited the pro-inflammatory cytokine expression in chronic suppurative otitis media. Finally, we found that both Nrf2 overexpression and TLR4 deficiency promoted chronic inflammation in LPS-induced acute otitis media mice models. Taken together, knock-down of Nrf2 reversed chronic inflammation to attenuate chronic suppurative otitis media by up-regulating TLR4.  相似文献   
136.
Duckweed (Lemnaceae) is a fast‐growing aquatic vascular plant. It has drawn an increasing attention worldwide due to its application in value‐added nutritional products and in sewage disposal. In particular, duckweed is a promising feedstock for bioenergy production. In this review, we summarized applications of duckweed from the following four aspects. Firstly, duckweed could utilize nitrogen, phosphorus, and inorganic nutrition in wastewater and reduces water eutrophication efficiently. During these processes, microorganisms play an important role in promoting duckweed growth and improving its tolerance to stresses. We also introduced our pilot‐scale test using duckweed for wastewater treatment and biomass production simultaneously. Secondly, its capability of fast accumulation of large amounts of starch makes duckweed a promising bioenergy feedstock, catering the currently increasing demand for bioethanol production. Pretreatment conditions prior to fermentation can be optimized to improve the conversion efficiency from starch to bioethanol. Furthermore, duckweed serves as an ideal source for food supply or animal feed because the composition of amino acids in duckweed is similar to that of whey protein, which is easily digested and assimilated by human and other animals. Finally, severing as a natural plant factory, duckweed has shown great potential in the production of pharmaceuticals and dietary supplements. With the surge of omics data and the development of Clustered Regularly Interspaced Short Palindromic Repeats technology, remodeling of the metabolic pathway in duckweed for synthetic biology study will be attainable in the future.  相似文献   
137.
It has been demonstrated that neural precursor cell expressed developmentally downregulated protein (NEDD) plays crucial roles in tumorigenesis and may serve as potential biomarkers in cancer diagnosis and prognosis. However, few studies systematically investigated the expression of NEDD family members in acute myeloid leukaemia (AML). We systemically determined the expression of NEDD family members in AML and determined their clinical significance. We identified that NEDD9 expression was the only member among NEDD family which was significantly increased in AML. NEDD9 overexpression was more frequently classified as FAB-M4/M5 (= 0.008 and 0.013, respectively), hardly as FAB-M2/M3. Moreover, NEDD9 overexpression was significantly associated with complex karyotype and TP53 mutation. The significant association between NEDD9 overexpression and survival was also observed in whole-cohort AML and non-M3 AML patients. Notably, AML patients with NEDD9 overexpression may benefit from hematopoietic stem cell transplantation (HSCT), whereas those cases without NEDD9 overexpression did not. Finally, a total of 822 mRNAs and 31 microRNAs were found to be differentially expressed between two groups. Among the microRNAs, miR-381 was also identified as a microRNA that could direct target NEDD9. Taken together, our findings demonstrated that NEDD9 overexpression is associated with genetic abnormalities as well as prognosis and might act as a potential biomarker guiding the choice between HSCT and chemotherapy in patients with AML after achieving complete remission.  相似文献   
138.
Based on previous studies, 66 2-phenyl-4H-chromone derivatives containing amide and 1,3,4-oxadiazole moieties were prepared as potential telomerase inhibitors. The results showed most of the title compounds exhibited significantly inhibitory activity on telomerase. Among them, some compounds demonstrated the most potent telomerase inhibitory activity (IC50 < 1 µM), which was significantly superior to the staurosporine (IC50 = 6.41 µM). In addition, clear structure–activity relationships were summarised, indicating that the substitution of the methoxy group and the position, type and number of the substituents on the phenyl ring had significant effects on telomerase activity. Among them, compound A33 showed considerable inhibition against telomerase. Flow cytometric analysis showed that compound A33 could arrest MGC-803 cell cycle at G2/M phase and induce apoptosis in a concentration-dependent way. Meanwhile, Western blotting revealed that this compound could reduce the expression of dyskerin, which is a fragment of telomerase.  相似文献   
139.
Hepatocellular cancer (HCC) has been reported to belong to one of the highly vascularized solid tumours accompanied with angiogenesis of human umbilical vein endothelial cells (HUVECs). KDM5A, an attractive drug target, plays a critical role in diverse physiological processes. Thus, this study aims to investigate its role in angiogenesis and underlying mechanisms in HCC. ChIP-qPCR was utilized to validate enrichment of H3K4me3 and KDM5A on the promotor region of miR-433, while dual luciferase assay was carried out to confirm the targeting relationship between miR-433 and FXYD3. Scratch assay, transwell assay, Edu assay, pseudo-tube formation assay and mice with xenografted tumours were conducted to investigate the physiological function of KDM5A-miR-433-FXYD3-PI3K-AKT axis in the progression of HCC after loss- and gain-function assays. KDM5A p-p85 and p-AKT were highly expressed but miR-433 was down-regulated in HCC tissues and cell lines. Depletion of KDM5A led to reduced migrative, invasive and proliferative capacities in HCC cells, including growth and a lowered HUVEC angiogenic capacity in vitro. Furthermore, KDM5A suppressed the expression of miR-433 by demethylating H3K4me3 on its promoterregion. miR-433 negatively targeted FXYD3. Depleting miR-433 or re-expressing FXYD3 restores the reduced migrative, invasive and proliferative capacities, and lowers the HUVEC angiogenic capacity caused by silencing KDM5A. Therefore, KDM5A silencing significantly suppresses HCC tumorigenesis in vivo, accompanied with down-regulated miR-433 and up-regulated FXYD3-PI3K-AKT axis in tumour tissues. Lastly, KDM5A activates the FXYD3-PI3K-AKT axis to enhance angiogenesis in HCC by suppressing miR-433.  相似文献   
140.
Dumont  Henri J.  Han  Bo-Ping  Guo  Fei Fei  Chen  Hua  Cheng  Dan  Liu  Ping  Xu  Lei  Sanoamuang  La-Orsri  Rietzler  Arnola C.  Xu  Shaolin  Vierstraete  Andy  Elias-Gutierrez  Manuel 《Aquatic Ecology》2021,55(4):1207-1222
Aquatic Ecology - Diaphanosoma s.l., with 40+? described species, is the largest genus of the Sididae and the Ctenopoda, similar in many ways to the anomopod genus Daphnia. Here, we offer a c...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号