全文获取类型
收费全文 | 25492篇 |
免费 | 2104篇 |
国内免费 | 2056篇 |
专业分类
29652篇 |
出版年
2024年 | 72篇 |
2023年 | 391篇 |
2022年 | 860篇 |
2021年 | 1378篇 |
2020年 | 923篇 |
2019年 | 1204篇 |
2018年 | 1105篇 |
2017年 | 742篇 |
2016年 | 1130篇 |
2015年 | 1669篇 |
2014年 | 1829篇 |
2013年 | 1907篇 |
2012年 | 2328篇 |
2011年 | 2036篇 |
2010年 | 1243篇 |
2009年 | 1142篇 |
2008年 | 1332篇 |
2007年 | 1130篇 |
2006年 | 1008篇 |
2005年 | 782篇 |
2004年 | 628篇 |
2003年 | 573篇 |
2002年 | 465篇 |
2001年 | 408篇 |
2000年 | 378篇 |
1999年 | 395篇 |
1998年 | 249篇 |
1997年 | 277篇 |
1996年 | 230篇 |
1995年 | 217篇 |
1994年 | 188篇 |
1993年 | 160篇 |
1992年 | 211篇 |
1991年 | 170篇 |
1990年 | 168篇 |
1989年 | 109篇 |
1988年 | 106篇 |
1987年 | 93篇 |
1986年 | 70篇 |
1985年 | 76篇 |
1984年 | 47篇 |
1983年 | 49篇 |
1982年 | 23篇 |
1981年 | 17篇 |
1980年 | 14篇 |
1979年 | 12篇 |
1978年 | 10篇 |
1976年 | 9篇 |
1969年 | 9篇 |
1965年 | 16篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
72.
空间异质性对样地数据空间外推的影响 总被引:1,自引:0,他引:1
应用模型结合的方法模拟了3个空间异质性等级预案下反应变量(气候变化下景观水平的树种分布面积)的变化情况,并分析模拟结果在预案之间的差异性,探讨了环境空间异质性对样地观测到的树种对气候变化响应向更大空间尺度外推的影响.结果表明:空间异质性在一般情况下对样地数据向土地类型尺度外推没有影响,而对样地尺度外推到海拔带尺度的影响则有较复杂的情况.对于对气候变化不敏感的树种以及非地带性树种,空间异质性对样地数据向海拔带尺度外推没有影响;对于大多数对气候变化敏感的地带性树种而言,空间异质性对样地数据向海拔带尺度外推则有影响. 相似文献
73.
The cornea is the shield to the foreign world and thus, a primary site for peripheral infections. However, transparency and vision are incompatible with inflammation and scarring that may result from infections. Thus, the cornea is required to perform a delicate balance between fighting infections and preserving vision. To date, little is known about the specific role of antigen-presenting cells in viral keratitis. In this study, utilizing an established murine model of primary acute herpes simplex virus (HSV)-1 keratitis, we demonstrate that primary HSV keratitis results in increased conventional dendritic cells (cDCs) and macrophages within 24 hours after infection. Local depletion of cDCs in CD11c-DTR mice by subconjuntival diphtheria toxin injections, led to increased viral proliferation, and influx of inflammatory cells, resulting in increased scarring and clinical keratitis. In addition, while HSV infection resulted in significant corneal nerve destruction, local depletion of cDCs resulted in a much more severe loss of corneal nerves. Further, local cDC depletion resulted in decreased corneal nerve infection, and subsequently decreased and delayed systemic viral transmission in the trigeminal ganglion and draining lymph node, resulting in decreased mortality of mice. In contrast, sham depletion or depletion of macrophages through local injection of clodronate liposomes had neither a significant impact on the cornea, nor an effect on systemic viral transmission. In conclusion, we demonstrate that corneal cDCs may play a primary role in local corneal defense during viral keratitis and preserve vision, at the cost of inducing systemic viral dissemination, leading to increased mortality. 相似文献
74.
Changhui Deng Xinghua Xiong Andrew N. Krutchinsky 《Molecular & cellular proteomics : MCP》2009,8(6):1413-1423
We have developed and applied a method unifying fluorescence microscopy and mass spectrometry for studying spatial and temporal properties of proteins and protein complexes in yeast cells. To combine the techniques, first we produced a variety of DNA constructs that can be used for genomic tagging of proteins with modular fluorescent and affinity tags. The modular tag consists of one of the multiple versions of monomeric fluorescent proteins fused to a variety of small affinity epitopes. After this step we tested the constructs by tagging two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, the large protein complexes involved in endocytosis in Saccharomyces cerevisiae, with a variety of fluorescent and affinity probes. Among the modular tags produced we found several combinations that were optimal for determining subcellular localization and for purifying the tagged proteins and protein complexes for the detailed analysis by mass spectrometry. And finally, we applied the designed method for finding the new protein components of eisosomes and for gaining new insights into molecular mechanisms regulating eisosome assembly and disassembly by reversible phosphorylation and dephosphorylation. Our results indicate that this approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells.Fluorescent proteins have become invaluable probes for studying molecular processes in living cells with light microscopy techniques (1–3). Proteins, organelles, and entire cells can be selectively visualized using a variety of fluorescent proteins fused to the proteins of interest (1–6). Combined with genetics and molecular biology techniques fluorescence microscopy provides an efficient tool for observing molecular phenotypes useful for dissecting the pathways of cell cycle progression and cell response to internal and external signals (7). However, understanding the mechanism controlling the properties of proteins in cells can be a challenging task, frequently requiring a comprehensive characterization of the proteins at the molecular level.The proteins tagged with green fluorescent protein (GFP)1 can be also purified using GFP antibodies. Cheeseman and Desai (8) and Cristea et al. (9) have enriched GFP-tagged proteins and protein complexes for further detailed analysis by MS. The MS-based methods for protein analysis are fast, sensitive, and able to identify both proteins in complex protein mixtures and residues bearing post-translational modifications (10, 11). Thus, the addition of affinity purification and mass spectrometry steps enabled the researchers to study protein interactions and the post-translational modifications in the context of the protein subcellular localization. Juxtaposition of the protein localization, composition of the protein complexes, and post-translational modifications frequently yield a unique perspective of the cellular processes and the molecular mechanisms of their regulation (12, 13).Using fluorescent proteins also as affinity probes can be problematic in several instances. First of all, the good quality antibodies against the rapidly increasing number of fluorescent proteins (3, 6) are not yet readily available. Furthermore raising antibodies specifically recognizing fluorescent proteins originating from the same organism but fluorescing a different color can be difficult or even impossible because such proteins frequently differ by mutations of only a few amino acids (1–6). Thus, we seek an alternative approach to the design of tags suitable for subcellular localization and purification of proteins and protein complexes that is 1) independent of the availability of antibody to a specific form of a fluorescent protein, 2) suitable for multiplexing, i.e. simultaneous observation of subcellular localization of several proteins and affinity purification of the proteins and stably associated protein complexes, and 3) flexible and easy to modify to incorporate better versions of fluorescent proteins and affinity tags after they are discovered.One possible solution that satisfies the stated requirements is to use a modular tag containing a version of a fluorescent protein fused to an affinity epitope. In this case we can decouple requirements for both modules and optimize the performance of each one independently for fluorescence microscopy and affinity purification experiments. To our knowledge, this possibility was first realized by Thorn and co-worker (14) who have fused 3HA (three repeats of YPYDVPDYA epitope from hemagglutinin protein) and 13MYC (13 repeats of EQKLISEEDL epitope, corresponding to a stretch of the C-terminal amino acids of the human c-MYC protein) tags to several variants of fluorescent proteins. The authors have argued that the fusion of the fluorescent proteins to the affinity epitopes may enable fluorescence and immunochemical analysis but did not test this idea. Cheeseman and Desai (8) fused the S-peptide and hexahistidine epitopes to the GFP protein to enable additional tandem purification steps. Su and co-workers (15) also fused a hexahistidine tag (His6) to GFP to purify recombinantly produced proteins. Although hexahistidine tag performs well for isolation of overexpressed recombinant proteins, it works poorly for affinity purification of low abundance, endogenously expressed proteins (16). A double affinity tag containing a single MYC epitope and hexahistidine was also used to purify recombinantly produced fluorescent proteins (6).Here we describe the design and implementation of the modular fluorescent and affinity tags. These tags contain a variety of fluorescent proteins, which can be used exclusively for obtaining subcellular visualization, and several small epitope tags that can be utilized to perform two-step affinity purification. To test the performance of the constructs produced, we tagged two yeast proteins, Pil1 and Lsp1, the core components of eisosomes, with a variety of modular tags.Eisosomes are large heterodimeric protein complexes recently discovered in Saccharomyces cerevisiae (17). There are ∼50–100 eisosomes in each mature yeast cell distributed uniformly in a characteristic dotted pattern at the cell surface periphery. Each eisosome contains ∼2000–5000 copies of Pil1 and Lsp1. It was shown that eisosomes serve as portals of endocytosis in yeast. The function of eisosomes is regulated by reversible phosphorylation (18, 19).Among the constructs tested, we found several combinations of fluorescent protein and affinity tags that were optimal for determining subcellular localization and purification of the proteins and protein complexes. We applied these tags to further investigate eisosomes and found several new protein components of the complexes and obtained new insights into molecular mechanisms regulating eisosome integrity by reversible phosphorylation and dephosphorylation. Our results indicate that an approach combining fluorescence microscopy and mass spectrometry into a single method provides a unique perspective into molecular mechanisms regulating composition and dynamic properties of the protein complexes in living cells. 相似文献
75.
Xi Chen Jun-Gen Hu Yi-Zhou Huang Shun Li Sheng-Fu Li Min Wang Hong-Wei Xia Jesse Li-Ling Hui-Qi Xie 《Journal of cellular physiology》2020,235(1):221-231
The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy. 相似文献
76.
77.
Joe Carver Domingos Ng Michelle Zhou Peggy Ko Dejin Zhan Mandy Yim David Shaw Brad Snedecor Michael W. Laird Steven Lang Amy Shen Zhilan Hu 《Biotechnology progress》2020,36(4):e2967
Historically, therapeutic protein production in Chinese hamster ovary (CHO) cells has been accomplished by random integration (RI) of expression plasmids into the host cell genome. More recently, the development of targeted integration (TI) host cells has allowed for recombination of plasmid DNA into a predetermined genomic locus, eliminating one contributor to clone-to-clone variability. In this study, a TI host capable of simultaneously integrating two plasmids at the same genomic site was used to assess the effect of antibody heavy chain and light chain gene dosage on antibody productivity. Our results showed that increasing antibody gene copy number can increase specific productivity, but with diminishing returns as more antibody genes are added to the same TI locus. Random integration of additional antibody DNA copies in to a targeted integration cell line showed a further increase in specific productivity, suggesting that targeting additional genomic sites for gene integration may be beneficial. Additionally, the position of antibody genes in the two plasmids was observed to have a strong effect on antibody expression level. These findings shed light on vector design to maximize production of conventional antibodies or tune expression for proper assembly of complex or bispecific antibodies in a TI system. 相似文献
78.
79.
Inflammation may play a major role in the pathogenesis of preeclampsia (PE). In this meta-analysis, we determined whether maternal polymorphisms and serum concentrations of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were associated with PE. All studies investigating the associations between PE and maternal polymorphisms of TNF-α-308G/A, IL-6-174G/C, and IL-10-1082A/G or serum concentrations of TNF-α, IL-6, and IL-10 were reviewed. We found that neither maternal TNF-α-308G/A (p=0.86, odds ratio [OR]=0.98, 95% confidence interval [CI], 0.76-1.25), IL-6 174G/C (p=0.14, OR=1.23, 95% CI, 0.93-1.61), nor IL-10-1082A/G (p=0.72, OR=1.07, 95% CI, 0.75-1.52) were associated with PE. On the other hand, maternal TNF-α (p<0.00001, weighted mean difference [WMD]=19.63 pg/ml, 95% CI, 18.54-20.72 pg/ml), IL-6 (p<0.00001, WMD=6.58 pg/ml, 95% CI, 5.49-7.67 pg/ml), and IL-10 (p=0.0005, WMD=19.30 pg/ml, 95% CI, 8.42-30.17 pg/ml) concentrations were significantly higher in PE patients versus controls. Our findings strengthen the clinical evidence that PE is accompanied by exaggerated inflammatory responses, but do not support TNF-α-308G/A, IL-6-174G/C, and IL-10-1082A/G as candidate susceptibility loci in PE. 相似文献
80.
Lei Su Mengzhou Liu Chengming You Qun Guo Zhongmin Hu Zhongling Yang Guoyong Li 《Ecology and evolution》2021,11(21):15020
Previous studies have demonstrated changes in plant growth and reproduction in response to nutrient availability, but responses of plant growth and reproduction to multiple levels of nutrient enrichment remain unclear. In this study, a factorial field experiment was performed with manipulation of nitrogen (N) and phosphorus (P) availability to examine seed production of the dominant species, Stipa krylovii, in response to N and P addition in a temperate steppe. There were three levels of N and P addition in this experiment, including no N addition (0 g N m−2 year−1), low N addition (10 g N m−2 year−1), and high N addition (40 g N m−2 year−1) for N addition treatment, and no P addition (0 g P m−2 year−1), low P addition (5 g P m−2 year−1), and high P addition (10 g P m−2 year−1) for P addition treatment. Low N addition enhanced seed production by 814%, 1371%, and 1321% under ambient, low, and high P addition levels, respectively. High N addition increased seed production by 2136%, 3560%, and 3550% under ambient, low, and high P addition levels, respectively. However, P addition did not affect seed production in the absence of N addition, but enhanced it under N addition. N addition enhanced seed production mainly by increasing the tiller number and inflorescence abundance per plant, whereas P addition stimulated it by decreasing the plant density yet stimulating height of plants and their seed number per inflorescence. Our results indicate seed production is not limited by P availability but rather by N availability in the temperate steppe, whereas seed production will be increased by P addition when N availability is improved. These findings enable a better understanding of plant reproduction dynamics in the temperate steppe under intensified nutrient enrichment and can inform their improved management in the future. 相似文献