首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42040篇
  免费   3598篇
  国内免费   3905篇
  2024年   49篇
  2023年   434篇
  2022年   839篇
  2021年   1782篇
  2020年   1319篇
  2019年   1620篇
  2018年   1558篇
  2017年   1160篇
  2016年   1646篇
  2015年   2520篇
  2014年   2903篇
  2013年   3108篇
  2012年   3896篇
  2011年   3393篇
  2010年   2221篇
  2009年   2042篇
  2008年   2482篇
  2007年   2171篇
  2006年   2012篇
  2005年   1743篇
  2004年   1522篇
  2003年   1384篇
  2002年   1159篇
  2001年   875篇
  2000年   781篇
  1999年   742篇
  1998年   482篇
  1997年   445篇
  1996年   382篇
  1995年   349篇
  1994年   308篇
  1993年   235篇
  1992年   315篇
  1991年   252篇
  1990年   237篇
  1989年   182篇
  1988年   148篇
  1987年   152篇
  1986年   114篇
  1985年   92篇
  1984年   61篇
  1983年   82篇
  1982年   37篇
  1981年   33篇
  1980年   23篇
  1979年   29篇
  1978年   24篇
  1977年   21篇
  1976年   17篇
  1965年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Lipopolysaccharide (LPS), also known as endotoxin, is the primary trigger of sepsis, which is associated with high mortality in patients. No therapeutic agents are currently efficacious enough to protect patients from sepsis characterized by LPS-mediated tissue damage and organ failure. Previously, a phosvitin-derived peptide, Pt5, which consists of the C-terminal 55 residues of zebrafish phosvitin, has been shown to function as an antibacterial agent. In this study, we have generated six mutants by site-directed mutagenesis based on the sequence of Pt5, and found that one of the six mutants, Pt5e, showed the strongest bactericidal activities against Escherichia coli and Staphylococcus aureus. We then demonstrated that Pt5e was able to bind to LPS and lipoteichoic acid (LTA). More importantly, we showed that Pt5e significantly inhibited LPS-induced tumor-necrosis factor (TNF)-α and interleukin (IL)-1β release from murine RAW264.7 cells and considerably reduced serum TNF-α and IL-1β levels in mice. Additionally, Pt5e protected the liver from damage by LPS, and remarkably promoted the survival rate of the endotoxemia mice. Furthermore, Pt5e displayed no cytotoxicity to murine RAW264.7 macrophages and no hemolytic activity toward human red blood cells. These data together indicate that Pt5e is an endotoxin-neutralizing agent with a therapeutic potential in clinical treatment of LPS-induced sepsis.  相似文献   
962.
963.
The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An 18F-labeled DPAZn2 complex (4-18F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), 18F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of 18F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2′-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[18F]-fluorobenzoate (18F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of 18F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of 18F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of 18F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that 18F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of 18F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.  相似文献   
964.
p53 acetylation enhances Taxol-induced apoptosis in human cancer cells   总被引:1,自引:0,他引:1  
Microtubule inhibitors (MTIs) such as Taxol have been used for treating various malignant tumors. Although MTIs have been known to induce cell death through mitotic arrest, other mechanisms can operate in MTI-induced cell death. Especially, the role of p53 in this process has been controversial for a long time. Here we investigated the function of p53 in Taxol-induced apoptosis using p53 wild type and p53 null cancer cell lines. p53 was upregulated upon Taxol treatment in p53 wild type cells and deletion of p53 diminished Taxol-induced apoptosis. p53 target proteins including MDM2, p21, BAX, and β-isoform of PUMA were also upregulated by Taxol in p53 wild type cells. Conversely, when the wild type p53 was re-introduced into two different p53 null cancer cell lines, Taxol-induced apoptosis was enhanced. Among post-translational modifications that affect p53 stability and function, p53 acetylation, rather than phosphorylation, increased significantly in Taxol-treated cells. When acetylation was enhanced by anti-Sirt1 siRNA or an HDAC inhibitor, Taxol-induced apoptosis was enhanced, which was not observed in p53 null cells. When an acetylation-defective mutant of p53 was re-introduced to p53 null cells, apoptosis was partially reduced compared to the re-introduction of the wild type p53. Thus, p53 plays a pro-apoptotic role in Taxol-induced apoptosis and acetylation of p53 contributes to this pro-apoptotic function in response to Taxol in several human cancer cell lines, suggesting that enhancing acetylation of p53 could have potential implication for increasing the sensitivity of cancer cells to Taxol.  相似文献   
965.
Cell delivery via the retrograde coronary route boasts less vessel embolism, myocardial injury, and arrhythmogenicity when compared with those via antegrade coronary administration or myocardial injection. However, conventional insertion into the coronary sinus and consequent bleeding complication prevent its application in small animals. To overcome the complication of bleeding, we described a modified coronary retroinfusion technique via the jugular vein route in rats with myocardial infarction (MI). A flexible wire with a bent end was inserted into the left internal jugular vein and advanced slowly along the left superior vena cava. Under direct vision, the wire was run into the left cardiac vein by rotating the wire and changing the position of its tip. A fine tube was then advanced along the wire to the left cardiac vein. This modified technique showed less lethal hemorrhage than the conventional technique. Retroinfusion via transjugular catheter enabled efficient fluid or cell dissemination to the majority areas of the free wall of the left ventricle, covering the infarcted anterior wall. In conclusion, transjugular cardiac vein catheterization may make retrocoronary infusion a more safe and practical route for delivering cell, drug, and gene therapy into the infarcted myocardium of rats.  相似文献   
966.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   
967.
With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.  相似文献   
968.
A new two-phase kinetic model of sporulation of Clonostachys rosea in a new solid-state fermentation (SSF) reactor was proposed. The model including exponential and logistic models was applied to study the simultaneous effect of temperature, initial moisture content, medium thickness and surface porosity of the plastic membrane on C. rosea sporulation. The model fits experimental data very well and allows accurate predictions of spore production. The maximum spore production achieved 3.360 × 1010 (spores/gDM), about 10 times greater than that in traditional SSF reactor(data not shown). The new reactor can provide two times sporulation surface area. Moisture content can be adjusted by changing the surface porosity to meet the spore production. Two mixings carried out during fermentation makes medium loose and results in a mass of new sporulation surface area. Therefore, the new SSF reactor would have great potential for application in bulk spore production of fungal biocontrol agents.  相似文献   
969.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   
970.
Apoptosis is an important aspect of a number of biological processes, from embryogenesis to the stress–injury response. It plays a central role in balancing cell proliferation and tissue remodeling activity in many organisms. In the present study, apoptosis in 14 days post infection schistosomula was evaluated using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays and DAPI staining. Additionally, flow cytometry using the Annexin V-FITC/propidium iodide (PI) (Annexin V/PI) assay confirmed the percentage of early apoptotic, late apoptotic, and necrotic cells in 14 and 23 days post infection worms. Conserved Domain Database (CDD) BLAST analysis and alignment analysis of known schistosome proteins demonstrated the feasibility of detecting the activity of caspase-3 and -7 using the caspase-3/7 Glo analysis assay. Analysis of caspase-3 and -7 activities in schistosome demonstrated that both caspases were active in each developmental stage of Schistosoma japonicum, but was highest in the 14 days post infection schistosomula. Additionally, the caspase peptide inhibitor (Z-VAD-FMK) inhibited the caspase-3/7 activity at all developmental stages examined. Therefore, we hypothesized that two main signaling pathways are involved in apoptosis in S. japonicum, the caspase cascade and the mitochondrial-initiated pathway. We have constructed a model of these two pathways, including how they may interact and their biological outcomes. qRT-PCR analyses of the gene expression profiles of apoptosis-related genes supported our hypothesis of the relationship between the apoptotic pathway and parasite development. The data presented here demonstrates that apoptosis is an important biological process for the survival and development of the schistosome, and identifies potential novel therapeutic targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号