首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4539篇
  免费   453篇
  国内免费   27篇
  2022年   35篇
  2021年   83篇
  2020年   25篇
  2019年   46篇
  2018年   75篇
  2017年   53篇
  2016年   96篇
  2015年   230篇
  2014年   257篇
  2013年   276篇
  2012年   352篇
  2011年   349篇
  2010年   216篇
  2009年   165篇
  2008年   226篇
  2007年   213篇
  2006年   223篇
  2005年   191篇
  2004年   184篇
  2003年   134篇
  2002年   118篇
  2001年   130篇
  2000年   101篇
  1999年   57篇
  1998年   42篇
  1997年   37篇
  1996年   42篇
  1995年   26篇
  1994年   40篇
  1993年   31篇
  1992年   67篇
  1991年   50篇
  1990年   57篇
  1989年   62篇
  1988年   38篇
  1987年   50篇
  1986年   32篇
  1985年   46篇
  1984年   38篇
  1983年   33篇
  1982年   49篇
  1980年   20篇
  1979年   42篇
  1978年   25篇
  1977年   33篇
  1976年   33篇
  1975年   40篇
  1974年   36篇
  1973年   40篇
  1971年   24篇
排序方式: 共有5019条查询结果,搜索用时 31 毫秒
991.
Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β‐oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees.  相似文献   
992.
The Escherichia coli maltose transporter MalFGK2‐E belongs to the protein superfamily of ATP‐binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide‐binding domains (NBDs) MalK2. In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all‐atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward‐facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF‐P2), and thus prevented the incorrect arrangement of the MalF C‐terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2. This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.  相似文献   
993.
Homologous recombination and repair factors are known to promote both telomere replication and recombination‐based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase‐positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase‐negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi‐solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II‐like as well as ALT‐like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I‐like telomere features. In addition, we observed direct physical interactions between Blm and two telomere‐binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.  相似文献   
994.
995.
The Wnt signaling pathway is critical for normal tissue development and is an underlying mechanism of disease when dysregulated. Previously, we reported that the drug Niclosamide inhibits Wnt/β-catenin signaling by decreasing the cytosolic levels of Dishevelled and β-catenin, and inhibits the growth of colon cancers both in vitro and in vivo. Since the discovery of Niclosamide’s anthelmintic activity, a growing body of literature indicates that Niclosamide is a multifunctional drug. In an effort to identify derivatives of Niclosamide with improved pharmacokinetic properties that maintain the multifunctional drug activity of Niclosamide for clinical evaluation, we designed DK419, a derivative containing a 1H-benzo[d]imidazole-4-carboxamide substructure, using the structure-activity relationships (SAR) of the Niclosamide salicylanilide chemotype. Similar to Niclosamide, we found DK419 inhibited Wnt/β-catenin signaling, altered cellular oxygen consumption rate and induced production of pAMPK. Moreover, we found DK419 inhibited the growth of CRC tumor cells in vitro, had good plasma exposure when dosed orally, and inhibited the growth of patient derived CRC240 tumor explants in mice dosed orally. DK419, a derivative of Niclosamide with multifunctional activity and improved pharmacokinetic properties, is a promising agent to treat colorectal cancer, Wnt-related diseases and other diseases in which Niclosamide has demonstrated functional activity.  相似文献   
996.

Background

Lignin is a recalcitrant aromatic polymer that is a potential feedstock for renewable fuel and chemical production. Rhodococcus opacus PD630 is a promising strain for the biological upgrading of lignin due to its ability to tolerate and utilize lignin-derived aromatic compounds. To enhance its aromatic tolerance, we recently applied adaptive evolution using phenol as a sole carbon source and characterized a phenol-adapted R. opacus strain (evol40) and the wild-type (WT) strain by whole genome and RNA sequencing. While this effort increased our understanding of the aromatic tolerance, the tolerance mechanisms were not completely elucidated.

Results

We hypothesize that the composition of lipids plays an important role in phenol tolerance. To test this hypothesis, we applied high-resolution mass spectrometry analysis to lipid samples obtained from the WT and evol40 strains grown in 1 g/L glucose (glucose), 0.75 g/L phenol (low phenol), or 1.5 g/L phenol (high phenol, evol40 only) as a sole carbon source. This analysis identified?>?100 lipid species of mycolic acids, phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), and triacylglycerols. In both strains, mycolic acids had fewer double bond numbers in phenol conditions than the glucose condition, and evol40 had significantly shorter mycolic acid chain lengths than the WT strain in phenol conditions. These results indicate that phenol adaptation affected mycolic acid membrane composition. In addition, the percentage of unsaturated phospholipids decreased for both strains in phenol conditions compared to the glucose condition. Moreover, the PI content increased for both strains in the low phenol condition compared to the glucose condition, and the PI content increased further for evol40 in the high phenol condition relative to the low phenol condition.

Conclusions

This work represents the first comprehensive lipidomic study on the membrane of R. opacus grown using phenol as a sole carbon source. Our results suggest that the alteration of the mycolic acid and phospholipid membrane composition may be a strategy of R. opacus for phenol tolerance.
  相似文献   
997.
GATA2 deficiency is a recently described genetic disorder affecting hematopoietic stem cells and is associated with immunodeficiency, hematologic malignancy, and various cutaneous pathologies including cutaneous tumors. To explore the incidence and clinical course of melanoma in patients with germline GATA2 deficiencies, we conducted a retrospective chart review of 71 such patients and identified two with invasive melanoma. One melanoma was diagnosed early because it was associated with pruritus due to a graft‐versus‐tumor effect following bone marrow transplantation. The other one, a lentigo maligna melanoma, was locally excised but progressed to widespread metastasis and death several years later. Our observations and published studies of melanoma biology suggest an association between decreased GATA2 expression and melanoma progression. These findings suggest that GATA2 deficient patients may have an increased risk of melanoma and should be observed closely for new or changing skin lesions.  相似文献   
998.

Background

Galloway-Mowat syndrome (GAMOS) is a rare autosomal recessive disease characterized by the combination of glomerulopathy with early-onset nephrotic syndrome and microcephaly with central nervous system anomalies. Given its clinical heterogeneity, GAMOS is believed to be a genetically heterogenous group of disorders. Recently, it has been reported that mutations in KEOPS-encoding genes, including the OSGEP gene, were responsible for GAMOS.

Results

Overall, 6 patients from 5 different Taiwanese families were included in our study; the patients had an identical OSGEP gene mutation (c.740G?>?A transition) and all exhibited a uniform clinical phenotype with early-onset nephrotic syndrome, craniofacial and skeletal dysmorphism, primary microcephaly with pachygyria, and death before 2?years of age. We reviewed their clinical manifestations, the prenatal and postnatal presentations and ultrasound findings, results of imaging studies, associated anomalies, and outcome on follow-up. All individuals were found to have an “aged face” comprising peculiar facial dysmorphisms. Arachnodactyly or camptodactyly were noted in all patients. Neurological findings consisted of microcephaly, hypotonia, developmental delay, and seizures. Brain imaging studies all showed pachygyria and hypomyelination. All patients developed early-onset nephrotic syndrome. The proteinuria was steroid-resistant and eventually resulted in renal function impairment. Prenatal ultrasound findings included microcephaly, intrauterine growth restriction, and oligohydramnios. Fetal MRI in 2 patients confirmed the gyral and myelin abnormalities.

Conclusions

Our study suggests that a careful review of the facial features can provide useful clues for an early and accurate diagnosis. Prenatal ultrasound findings, fetal MRI, genetic counseling, and mutation analysis may be useful for an early prenatal diagnosis.
  相似文献   
999.
1000.
Abstract: To determine whether prolonged exposure to nicotine differentially affects α3β2 versus α4β2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 µ M nicotine for α4β2 and α3β2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of α4β2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 n M range following incubation for 24 h and in the 1 n M range following incubation for 48 h. In contrast, responses of α3β2 receptors following incubation for 24–48 h with 1,000 n M nicotine decreased by only 50–60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for α4β2 and α3β2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for α4β2 and α3β2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but α4β2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号