首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19629篇
  免费   1885篇
  国内免费   644篇
  22158篇
  2023年   132篇
  2022年   315篇
  2021年   472篇
  2020年   321篇
  2019年   413篇
  2018年   472篇
  2017年   350篇
  2016年   592篇
  2015年   965篇
  2014年   1057篇
  2013年   1253篇
  2012年   1452篇
  2011年   1429篇
  2010年   937篇
  2009年   739篇
  2008年   1009篇
  2007年   944篇
  2006年   891篇
  2005年   819篇
  2004年   750篇
  2003年   716篇
  2002年   642篇
  2001年   551篇
  2000年   484篇
  1999年   450篇
  1998年   217篇
  1997年   203篇
  1996年   186篇
  1995年   167篇
  1994年   151篇
  1993年   121篇
  1992年   245篇
  1991年   244篇
  1990年   203篇
  1989年   216篇
  1988年   189篇
  1987年   152篇
  1986年   144篇
  1985年   168篇
  1984年   123篇
  1983年   98篇
  1982年   90篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1977年   71篇
  1976年   68篇
  1975年   88篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
AIMS: The isolation and identification of a glucose-oxidizing Fe(III)-reducing bacteria (FRB) with electrochemical activity from an anoxic environment, and characterization of the role of Fe(III) in its metabolism. METHODS AND RESULTS: A Gram-positive (Firmicutes), nonmotile, coccoid and facultative anaerobic FRB was isolated based on its ability to reduce Fe(III). Using the Vitek Gram-positive identification card kit and 16S rRNA gene sequence analysis, the isolate was identified as Enterococcus gallinarum, designated strain MG25. On glucose this isolate produced lactate plus small amounts of acetate, formate and CO2 and its growth rates were similar in the presence and absence of Fe(O)OH. These results suggest that MG25 can couple glucose oxidation to Fe(III) reduction, but without conservation of energy to support growth. Cyclic voltammetry showed that strain MG25 was electrochemically active. CONCLUSIONS: An electrochemically active and FRB, E. gallinarum MG25, was isolated from submerged soil. Fe(III) is used in the bacterial metabolism as an electron sink. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report concerning the electrochemical activity of glucose-oxidizing FRB, E. gallinarum. This organism and others like it could be used as new biocatalysts to improve the performance of a mediator-less microbial fuel cell.  相似文献   
993.
We have analyzed the distribution of RNA nucleotidyltransferases from the family that includes poly(A) polymerases (PAP) and tRNA nucleotidyltransferases (TNT) in 43 bacterial species. Genes of several bacterial species encode only one member of the nucleotidyltransferase superfamily (NTSF), and if that protein functions as a TNT, those organisms may not contain a poly(A) polymerase I like that of Escherichia coli. The genomes of several of the species examined encode more than one member of the nucleotidyltransferase superfamily. The function of some of those proteins is known, but in most cases no biochemical activity has been assigned to the NTSF. The NTSF protein sequences were used to construct an unrooted phylogenetic tree. To learn more about the function of the NTSFs in species whose genomes encode more than one, we have examined Bacillus halodurans. We have demonstrated that B. halodurans adds poly(A) tails to the 3' ends of RNAs in vivo. We have shown that the genes for both of the NTSFs encoded by the B. halodurans genome are transcribed in vivo. We have cloned, overexpressed, and purified the two NTSFs and have shown that neither functions as poly(A) polymerase in vitro. Rather, the two proteins function as tRNA nucleotidyltransferases, and our data suggest that, like some of the deep branching bacterial species previously studied by others, B. halodurans possesses separate CC- and A-adding tRNA nucleotidyltransferases. These observations raise the interesting question of the identity of the enzyme responsible for RNA polyadenylation in Bacillus.  相似文献   
994.
Previous attempts to extend the host range of the avian sarcoma/leukosis virus (ASLV)-based RCASBP vectors produced two viral vectors, RCASBP M2C (4070A) and RCASBP M2C (797-8), which replicate using the amphotropic murine leukemia virus 4070A Env protein (2). Both viruses were adapted to replicate efficiently in the avian cell line DF-1, but RCASBP M2C (4070A) caused extensive cytopathic effects (CPE) in DF-1 cells whereas RCASBP M2C (797-8) induced low levels of CPE. The two viruses differed only at amino acid 242 of the polyproline-rich region in the surface (SU) subunit of the Env protein. In RCASBP M2C (4070A), an isoleucine replaced the wild-type proline residue, whereas a threonine residue was found in RCASBP M2C (797-8). In the present study, we show that other amino acid substitutions at position 242 strongly influence the CPE and replication rate of the chimeric viruses. There was a correlation between the amount of unintegrated linear retroviral DNA present in infected DF-1 cells and the level of CPE. This suggests that there may be a role for superinfection in the CPE. The treatment of RCASBP M2C (4070A)-infected cells with dantrolene, which inhibits the release of calcium from the endoplasmic reticulum (ER), reduced the amount of CPE seen during infection with the highly cytotoxic virus. Dantrolene treatment did not appear to affect virus production, suggesting that Ca2+ release from the ER had a role in the CPE caused by these viruses.  相似文献   
995.
Trosko JE  Chang CC  Upham BL  Tai MH 《Mutation research》2005,591(1-2):187-197
Since carcinogenesis is a multi-stage, multi-mechanism process, involving mutagenic, cell death and epigenetic mechanisms, during the "initiation/promotion/and progression" phases, chemoprevention must be based on understanding the underlying mechanism(s) of each phase, In principle, prevention of each of these phases could reduce the risk to cancer. However, because reducing the mutagenic/initiation phase to a zero level is impossible, the most efficacious intervention would be at the promotion phase that requires a sustained exposure to promoting conditions/agents. In addition, assuming the "target" cells for carcinogenesis are the pluri-potent stem cells and their early progenitor or transit cells, chemoprevention strategies for inhibiting the promotion of these two types of pre-malignant "initiated" cells will require different kinds of agents. A hypothesis will be proposed that involves adult stem cells, which express Oct-4 gene and lack gap junctional intercellular communication (GJIC-) or the early progenitor cells which express GJIC+ and are partially-differentiated, if initiated, will be promoted by agents that either inhibit secreted negative growth regulators or by inhibitors of GJIC. Consequently, anti-tumor promoting chemopreventing agents to each of these two types of initiated cells must have different mechanisms of action and work on different target cells. Assuming stem cells are target cells for carcinogenesis, an alternative method of chemoprevention would be to reduce the stem cell pool. Many classes of anti-tumor promoter chemopreventive agents, such as green tea components, resveratrol, caffeic acid phenethylene ester, either up-regulate GJIC in stem cells or prevent the down regulation of GJIC by tumor promoters in early progenitor cells.  相似文献   
996.
从细叶百合的鳞茎中克隆出过氧化物酶体生物合成蛋白基因(LpPEX7),该基因ORF全长957 bp,编码318个氨基酸。LpPEX7蛋白序列包含6个WD40保守结构域,通过同源蛋白序列比对和进化树分析,发现LpPEX7与其他植物的PEX7蛋白具有较高的同源性。LpPEX7基因在细叶百合种子,叶片和鳞茎中的表达量比较高,在根和花中表达量比较低,在H2O2,NaCl,NaHCO3不同逆境处理条件下,LpPEX7基因的表达量都发生了改变。在盐碱和氧化胁迫处理下,LpPEX7过表达拟南芥株系种子的萌发要早于野生型种子的萌发,这些研究结果表明LpPEX7基因与盐碱、氧化逆境有一定的应答关系,为细叶百合的耐盐碱性分子机理研究提供一个非常重要的候选基因。  相似文献   
997.
Characterization of arylsulfatase C isozymes from human liver and placenta   总被引:1,自引:0,他引:1  
Arylsulfatase C and steroid sulfatase were thought to be identical enzymes. However, recent evidence showed that human arylsulfatase C consists of two isozymes, s and f. In this study, the biochemical properties of the s form partially purified from human placenta were compared with those of the f form from human liver. Only the placental s form has steroid sulfatase activity and hydrolyses estrone sulfate, dehydroepiandrosterone sulfate and cholesterol sulfate. The liver f form has barely detectable activity towards these sterol sulfates. With the artificial substrate, 4-methylumbelliferyl sulfate, both forms demonstrated a similar KM but the liver enzyme has a pH optimum of 6.9 while the placental form displayed two optima at 7.3 and 5.5. The molecular weight of the native enzyme determined with gel filtration was 183,000 for the s form and 200,000 for the f form and their pI's were also similar at 6.5. However, the T50, temperature at which half of the enzyme activity was lost, was 49.5 degrees C for the f form and 56.8 degrees C for the s form. Polyclonal antibodies raised against the placental form reacted specifically against the s and not the f form. They immuno-precipitated concomitantly greater than 80% of the total placental arylsulfatase C and steroid sulfatase activities while less than 20% of the liver enzyme was immuno-precipitable. In conclusion, the two isozymes s and f of arylsulfatase C in humans purified from placenta and liver, respectively, have similar KM, pI' and native molecular weight. However, they are distinct proteins with different substrate specificity, pH optima, heat-lability and antigenic properties. Only the s form is confirmed to be steroid sulfatase.  相似文献   
998.
999.
Lactococcus lactis IL1403 harbors a putative sortase A (SrtA) and 11 putative sortase substrates that carry the canonical LPXTG signature of such substrates. We report here on the functionality of SrtA to anchor five LPXTG substrates to the cell wall, thus suggesting that SrtA is the housekeeping sortase in L. lactis IL1403.The GRAS (generally recognized as safe) status of lactic acid bacteria (LAB) has catalyzed a myriad of promising applications using these bacteria as a vehicle for in situ delivery of bioactive proteins such as antigens or digestive enzymes in the gastrointestinal tract of the human host (4, 26). In the context of therapeutic applications of LAB, a major fundamental goal is to determine whether they can be engineered to deliver bioactive proteins to the right bacterial and host locations. We previously designed a protein-targeting system in LAB that addressed proteins to the desired bacterial site (i.e., cytoplasm, cell wall, or external medium), as validated using a model protein reporter and various antigens (14, 15). Studies investigating the use of LAB as vaccine delivery vehicles suggested that the cell-wall-anchored protein form may possess superior ability to induce a strong immune response (3, 14). Among the various surface display systems described in Gram-positive bacteria (13), a dedicated surface protein anchoring system catalyzed by sortases was first described and characterized in Staphylococcus aureus (29). It covalently anchors proteins via their C-terminal cell wall anchor (CWA) domain to the bacterial peptidoglycan. SrtA-like sortases process proteins bearing an LPXTG C-terminal motif and are considered to be the housekeeping sortase that anchors most proteins harboring a sorting signal (32). Other sortases were subsequently shown to anchor proteins bearing the same or other motifs (11, 16).Surprisingly, while the roles of sortases and LPXTG proteins are well documented in pathogens, few reports have examined these functions in other bacteria. A report suggests a relationship between sortase activity and adhesion of the LAB Lactobacillus salivarius, although direct involvement of sortase was not demonstrated (47). Recently, sortase activity was correlated to assembly of pili and adhesion properties in Lactobacillus rhamnosus (21). To further characterize sortase in LAB, we chose an industrially important member of this bacterial group, Lactococcus lactis, to study sortase A functionality in anchoring its putative substrates on the cell wall.  相似文献   
1000.
Na+/Ca2+ exchanger (NCX) is one of the major mechanisms for removing Ca2+ from the cytosol especially in cardiac myocytes and neurons, where their physiological activities are triggered by an influx of Ca2+. NCX contains a large intracellular loop (NCXIL) that is responsible for regulating NCX activity. Recent evidence has shown that proteins, including kinases and phosphatases, associate with NCX1IL to form a NCX1 macromolecular complex. To search for the molecules that interact with NCX1IL and regulate NCX1 activity, we used the yeast two-hybrid method to screen a human heart cDNA library and found that the C-terminal region of sarcomeric mitochondrial creatine kinase (sMiCK) interacted with NCX1IL. Moreover, both sMiCK and the muscle-type creatine kinase (CKM) coimmunoprecipitated with NCX1 using lysates of cardiacmyocytes and HEK293T cells that transiently expressed NCX1 and various creatine kinases. Both sMiCK and CKM were able to produce a recovery in the decreased NCX1 activity that was lost under energy-compromised conditions. This regulation is mediated through a putative PKC phosphorylation site of sMiCK and CKM. The autophosphorylation and the catalytic activity of sMiCK and CKM are not required for their regulation of NCX1 activity. Our results suggest a novel mechanism for the regulation of NCX1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号