首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   275篇
  免费   48篇
  国内免费   1篇
  2022年   3篇
  2021年   3篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   12篇
  2014年   7篇
  2013年   10篇
  2012年   12篇
  2011年   14篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   13篇
  2006年   11篇
  2005年   8篇
  2004年   6篇
  2003年   10篇
  2002年   6篇
  2001年   9篇
  2000年   16篇
  1999年   4篇
  1998年   6篇
  1997年   9篇
  1996年   6篇
  1994年   4篇
  1993年   4篇
  1992年   9篇
  1991年   11篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1981年   2篇
  1979年   3篇
  1977年   3篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1970年   3篇
  1969年   5篇
  1966年   2篇
  1963年   3篇
  1948年   3篇
  1945年   2篇
  1943年   2篇
  1931年   2篇
排序方式: 共有324条查询结果,搜索用时 171 毫秒
51.
52.
Sex steroid hormones and receptors play an important role in maintaining vaginal physiology. Disruptions in steroid receptor signaling adversely impact vaginal function. Limited studies are available investigating the effects of diabetic complications on steroid receptor expression and distribution in the vagina. The goals of this study were to investigate type 2 diabetes-induced changes in expression, localization and distribution of estrogen (ER), progesterone (PR) and androgen receptors (AR) in the vagina and to determine if estradiol treatment ameliorates these changes. Eight-week-old female diabetic (db/db) mice (strain BKS.Cg-m+/+ Leprdb/J) were divided into two subgroups: untreated diabetic and diabetic animals treated with pellets containing estradiol. Control normoglycemic littermates were subcutaneously implanted with pellets devoid of estradiol. At 16 weeks of age, animals were sacrificed, vaginal tissues excised and analyzed by Western blot and immunohistochemical methods. Diabetes produced marked reductions in protein expression of ER, PR, and AR. Diabetes also resulted in marked differences in the distribution, staining intensity and proportion of immunoreactive cells containing these steroid receptors in the epithelium, lamina propria and muscularis. Treatment of diabetic animals with estradiol restored receptor protein expression and distribution similar to those levels observed in control animals. This study demonstrates that type 2 diabetes markedly reduces steroid receptor protein expression and distribution in the vagina. Estradiol treatment of diabetic animals ameliorates these diabetes-induced changes.  相似文献   
53.
Human high‐density lipoprotein (HDL) plays a key role in the reverse cholesterol transport pathway that delivers excess cholesterol back to the liver for clearance. In vivo, HDL particles vary in size, shape and biological function. The discoidal HDL is a 140–240 kDa, disk‐shaped intermediate of mature HDL. During mature spherical HDL formation, discoidal HDLs play a key role in loading cholesterol ester onto the HDL particles by activating the enzyme, lecithin:cholesterol acyltransferase (LCAT). One of the major problems for high‐resolution structural studies of discoidal HDL is the difficulty in obtaining pure and, foremost, homogenous sample. We demonstrate here that the commonly used cholate dialysis method for discoidal HDL preparation usually contains 5–10% lipid‐poor apoAI that significantly interferes with the high‐resolution structural analysis of discoidal HDL using biophysical methods. Using an ultracentrifugation method, we quickly removed lipid‐poor apoAI. We also purified discoidal reconstituted HDL (rHDL) into two pure discoidal HDL species of different sizes that are amendable for high‐resolution structural studies. A small rHDL has a diameter of 7.6 nm, and a large rHDL has a diameter of 9.8 nm. We show that these two different sizes of discoidal HDL particles display different stability and phospholipid‐binding activity. Interestingly, these property/functional differences are independent from the apoAI α‐helical secondary structure, but are determined by the tertiary structural difference of apoAI on different discoidal rHDL particles, as evidenced by two‐dimensional NMR and negative stain electron microscopy data. Our result further provides the first high‐resolution NMR data, demonstrating a promise of structural determination of discoidal HDL at atomic resolution using a combination of NMR and other biophysical techniques.  相似文献   
54.
55.
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.  相似文献   
56.
Endoglin is a transforming growth factor β (TGF-β) co-receptor essential for angiogenesis and tumor vascularization. Endoglin modulates the crucial balance between pro- and anti-angiogenic signaling by activin receptor-like kinase (ALK) 1, 5, and TGF-β type II (TβRII) receptors. Despite its established role in physiology and disease, the mechanism of endoglin down-regulation remains unknown. Here we report that the conserved juxtamembrane cytoplasmic tyrosine motif (612YIY614) is a critical determinant of angiogenesis. Src directly phosphorylates this motif to induce endoglin internalization and degradation via the lysosome. We identified epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as Src-activators that induce endoglin turnover following 612YIY614 phosphorylation. Interestingly, Src phosphorylation of endoglin-612YIY614 was also an important process for receptor down-regulation by TRACON105 (TRC105), an endoglin-targeting antibody currently in clinical trials. The regulation of 612YIY614 phosphorylation was critical for angiogenesis, as both the phosphomimetic and unphosphorylatable mutants impaired endothelial functions including proliferation, migration, and capillary tube formation. Collectively, these findings establish Src and pro-angiogenic mitogens as critical mediators of endoglin stability and function.  相似文献   
57.
ADP ribosylation factor (ARF) is a ubiquitous 21-kDa GTP-binding protein in eucaryotes. ARF was first identified in animal cells as the protein factor required for the efficient ADP-ribosylation of the mammalian G protein Gs by cholera toxin in vitro. A gene (ARF1) encoding a protein homologous to mammalian ARF was recently cloned from Saccharomyces cerevisiae (Sewell and Kahn, Proc. Natl. Acad. Sci. USA, 85:4620-4624, 1988). We have found a second gene encoding ARF in S. cerevisiae, ARF2. The two ARF genes are within 28 centimorgans of each other on chromosome IV, and the proteins encoded by them are 96% identical. Disruption of ARF1 causes slow growth, cold sensitivity, and sensitivity to normally sublethal concentrations of fluoride ion in the medium. Disruption of ARF2 causes no detectable phenotype. Disruption of both genes is lethal; thus, ARF is essential for mitotic growth. The ARF1 and ARF2 proteins are functionally homologous, and the phenotypic differences between mutations in the two genes can be accounted for by the level of expression; ARF1 produces approximately 90% of total ARF. Among revertants of the fluoride sensitivity of an arf1 null mutation were ARF1-ARF2 fusion genes created by a gene conversion event in which the deleted ARF1 sequences were repaired by recombination with ARF2.  相似文献   
58.
The level of the viral cII protein has been proposed to be the crucial determinant in the lysis-lysogeny decision of bacteriophage lambda. A new Escherichia coli locus (hflB) has been identified in which a mutation (hflB29) leads to high frequency of lysogeny by lambda. A double mutant defective in both hflB and the previously identified hflA gene displays a more severe Hfl- phenotype than either single mutant. The hflB locus is at 69 minutes on the E. coli map, 85% co-transducible with argG. The hflB29 mutation results in increased stability of the phage cII protein (increasing its half-life twofold) and is recessive to hflB+. We conclude that the hflB+ locus is a negative regulator of cII, perhaps coding for or regulating a protease that acts on cII. In addition, we observe that the can1 mutation, an alteration of the cII gene that results in enhanced lysogenization, leads to increased stability of cII protein. These observations reinforce the view that the level of cII is a key factor in the lysis-lysogeny decision of lambda.  相似文献   
59.
Regeneration and reestablishment of synaptic connections is an important topic in neurobiological research. In the present study, the regeneration of auditory afferents and the accompanying effects in the central nervous system are investigated in nymphs and adults of the bush cricket Tettigonia viridissima L. (Orthoptera: Tettigoniidae). In all animals in which the tympanal nerve is crushed, neuronal tracing shows a regrowth of the afferents into the prothoracic ganglion. This regeneration is seen in both adult and nymphal stages and starts 10–15 days after nerve crushing. Physiological recordings from the leg nerve indicate a recovery of tympanal fibres and a formation of functional connections to interneurones in the same time range. Electrophysiological recordings from the neck connective suggest additional contralateral sprouting of interneurones and the formation of aberrant connections. The regeneration processes of the tympanal nerve in nymphal stages and adults appear to be similar.  相似文献   
60.
DNase I footprinting assays were performed to identify the binding sites for putative trans-acting factors involved in the control of alpha-fetoprotein (AFP) gene expression using mouse AFP promoter fragments (-839 to +56) and nuclear protein extracts from fetal, newborn, and adult livers and from brain and kidney. Our studies have shown that with nuclear protein from adult mouse liver, there are 14 protected regions in the AFP promoter up to -839 base pairs (bp). Region I (-82 to -43) was protected by at least three different factors, one of which is CCAAT-binding/enhancer-binding protein. This region is highly conserved in the mouse, rat, and human AFP genes and has been shown previously to be essential for the regulation of tissue-specific expression in mouse. Differences in DNase I protection with fetal, newborn, and adult nuclear proteins have been observed in the proximal promoter region (up to -202 bp) and in regions further upstream (up to -839 bp). Significant differences among liver, kidney, and brain nuclear protein-binding sites have also been observed. In these studies, we have mapped the fetal and adult nuclear protein-binding sites of the cis-acting DNA sequences of the mouse AFP proximal promoter (up to -200) and have identified specific protein-binding sites in the distal promoter (-200 to -839). We have also identified the sites of the AFP promoter which bind nuclear proteins from highly differentiated tissues in which AFP is not expressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号