首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   40篇
  国内免费   9篇
  523篇
  2021年   7篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   13篇
  2013年   16篇
  2012年   16篇
  2011年   34篇
  2010年   8篇
  2009年   11篇
  2008年   27篇
  2007年   25篇
  2006年   26篇
  2005年   16篇
  2004年   18篇
  2003年   16篇
  2002年   19篇
  2001年   22篇
  2000年   20篇
  1999年   15篇
  1998年   11篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1993年   2篇
  1992年   6篇
  1991年   13篇
  1990年   10篇
  1989年   7篇
  1988年   6篇
  1987年   9篇
  1986年   10篇
  1985年   9篇
  1984年   8篇
  1983年   3篇
  1982年   7篇
  1981年   8篇
  1980年   10篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   3篇
  1973年   3篇
  1972年   2篇
  1971年   5篇
  1970年   4篇
  1957年   6篇
  1955年   2篇
  1953年   2篇
  1950年   2篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
471.
Ligand activation of the metabotropic glutamate receptor (mGluR) activates the lipid kinase PI3K in both the mammalian central nervous system and Drosophila motor nerve terminal. In several subregions of the mammalian brain, mGluR-mediated PI3K activation is essential for a form of synaptic plasticity termed long-term depression (LTD), which is implicated in neurological diseases such as fragile X and autism. In Drosophila larval motor neurons, ligand activation of DmGluRA, the sole Drosophila mGluR, similarly mediates a PI3K-dependent downregulation of neuronal activity. The mechanism by which mGluR activates PI3K remains incompletely understood in either mammals or Drosophila. Here we identify CaMKII and the nonreceptor tyrosine kinase DFak as critical intermediates in the DmGluRA-dependent activation of PI3K at Drosophila motor nerve terminals. We find that transgene-induced CaMKII inhibition or the DFak(CG1) null mutation each block the ability of glutamate application to activate PI3K in larval motor nerve terminals, whereas transgene-induced CaMKII activation increases PI3K activity in motor nerve terminals in a DFak-dependent manner, even in the absence of glutamate application. We also find that CaMKII activation induces other PI3K-dependent effects, such as increased motor axon diameter and increased synapse number at the larval neuromuscular junction. CaMKII, but not PI3K, requires DFak activity for these increases. We conclude that the activation of PI3K by DmGluRA is mediated by CaMKII and DFak.  相似文献   
472.
The assembly of proteins into large fibrillar aggregates, known as amyloid fibrils, is associated with a number of common and debilitating diseases. In some cases, proteins deposit extracellularly, while in others the aggregation is intracellular. A common feature of these diseases is the presence of aggregates of different sizes, including mature fibrils, small oligomeric precursors, and other less well understood structural forms such as amorphous aggregates. These various species possess distinct biochemical, biophysical, and pathological properties. Here, we detail a number of techniques that can be employed to examine amyloid fibrils and oligomers using a fluorescence-detection system (FDS) coupled with the analytical ultracentrifuge. Sedimentation velocity analysis using fluorescence detection is a particularly useful method for resolving the complex heterogeneity present in amyloid systems and can be used to characterize aggregation in exceptional detail. Furthermore, the fluorescence detection module provides a number of particularly attractive features for the analysis of aggregating proteins. It expands the practical range of concentrations of aggregating proteins under study, which is useful for greater insight into the aggregation process. It also enables the assessment of aggregation behavior in complex biological solutions, such as cell lysates, and the assessment of processes that regulate in-cell or extracellular aggregation kinetics. Four methods of fluorescent detection that are compatible with the current generation of FDS instrumentation are described: (1) Detection of soluble amyloid fibrils using a covalently bound fluorophore. (2) Detection of amyloid fibrils using an extrinsic dye that emits fluorescence when bound to fibrils. (3) Detection of fluorescently-labeled lipids and their interaction with oligomeric amyloid intermediates. (4) Detection of green fluorescence protein (GFP) constructs and their interactions within mammalian cell lysates.  相似文献   
473.
Studies using genetic and biochemical probes have suggested that mouse sperm surface galactosyltransferases may participate during fertilization by binding N- acetylglucosamine (GlcNAc) residues in the egg zona pellucida. In light of these results, we examined sperm surface galactosyltransferase activity during in vitro capacitation to determine whether changes in enzymatic activity correlated with fertilizing ability. Results show that surface galactosyltransferases on uncapacitated sperm was preferentially loaded with poly N-acetyllactosamine substrates. As a consequence of capacitation in Ca(++)-containing medium, these polylactosaminyl substrates are spontaneously released from the sperm surface, thereby exposing the sperm galactosyltransferase for binding to the zona pellucida. Sperm capacitation can be mimicked, in the absence of Ca(++), either by washing sperm in Ca(++)-free medium, or by pretreating sperm with antiserum that reacts with the galactosyltransferase substrate. In both instances, sperm galgactosylation of endogenous polylactosaminyl substrates is reduced, coincident with increased galactosylation of exogenous GlcNAc, and increased binding to the zona pellucida. Binding of capacitated sperm to the egg can be inhibited by pronase-digested high molecular weight polyactosaminyl glycoside extracted from epidymal fluids or from undifferentiated F9 embryonal carninoma cells. Thus, these glycosides function as “decapacitation factors” when added back to in vitro fertilization assays. These glycoside “decapacitation factors” inhibit sperm-egg binding by competeing for the sperm surface galactosyltransferase, since (a) they are galactosylated by sperm in the presence of UDP[(3)H]galactose, and (b) enzymatic removal of terminal GlcNAc residues reduces “decapacitation factio” competition. On the other hand “conventional” low molecular weight glycosides, isolated from either epididymal fluid or differentiated F9 cells, fail to inhibit capacitated sperm binding to the zona pellucida. These results define a molecular mechanism for one aspect of sperm capacitation, and help explain why removal of “decapacitation factos” is a necessary prerequisite for sperm binding to the zona pellucida.  相似文献   
474.
This study reports the isolation of 15 microsatellites in Acacia hybrid (Acacia mangium×Acacia auriculiformis) based on the 5′ anchored polymerase chain reaction technique. Polymorphism of these loci was evaluated in a sample of 24 hybrid individuals. The level of polymorphism ranged from two to eight alleles with an observed heterozygosity ranging from 0.083 to 0.875. These loci were also characterized in both the parental species. The number of alleles ranged from two to six for both A. mangium and A. auriculiformis with the observed heterozygosity values ranging from 0.167 to 0.625 and 0.042 to 0.458 respectively. Five of these loci demonstrated Mendelian inheritance in a segregating F1 population; four presented a distorted ratio and the remaining six did not segregate in progenies as they were homozygous in both parents.  相似文献   
475.
Binger KJ  Griffin MD  Howlett GJ 《Biochemistry》2008,47(38):10208-10217
Methionine residues are linked to the pathogenicity of several amyloid diseases; however, the mechanism of this relationship is largely unknown. These diseases are characterized, in vivo, by the accumulation of insoluble proteinaceous plaques, of which the major constituents are amyloid fibrils. In vitro, methionine oxidation has been shown to modulate fibril assembly in several well-characterized amyloid systems. Human apolipoprotein (apo) C-II contains two methionine residues (Met-9 and Met-60) and readily self-assembles in vitro to form homogeneous amyloid fibrils, thus providing a convenient system to examine the effect of methionine oxidation on amyloid fibril formation and stability. Upon oxidation of the methionine residues of apoC-II with hydrogen peroxide, fibril formation was inhibited. Oxidized apoC-II molecules did not inhibit native apoC-II assembly, indicating that the oxidized molecules had a reduced ability to interact with the growing fibrils. Single Met-Val substitutions were performed and showed that oxidation of Met-60 had a more significant inhibitory effect than oxidation of Met-9. In addition, Met-Gln substitutions designed to mimic the effect of oxidation on side chain hydrophilicity showed that a change in hydrophobicity at position 60 within the core region of the fibril had a potent inhibitory effect. The oxidation of preformed apoC-II fibrils caused their dissociation; however, mutants in which the Met-60 was substituted with a valine were protected from this peroxide-induced dissociation. This work highlights an important role for methionine in the formation of amyloid fibril structure and gives new insight into how oxidation affects the stability of mature fibrils.  相似文献   
476.
This study examined the impact of age on contractile function, Ca(2+) homeostasis, and cell viability in isolated myocytes exposed to simulated ischemia and reperfusion. Ventricular myocytes were isolated from anesthetized young adult (3 mo) and aged (24 mo) male Fischer 344 rats. Cells were field-stimulated at 4 Hz (37 degrees C), exposed to simulated ischemia, and reperfused with Tyrode solution. Cell shortening and intracellular Ca(2+) were measured simultaneously with an edge detector and fura-2. Cell viability was assessed by Trypan blue exclusion. Ischemia (20-45 min) depressed amplitudes of contraction equally in isolated myocytes from young adult and aged animals. The degree of postischemic contractile depression (stunning) was comparable in both groups. Ca(2+) transient amplitudes were depressed in early reperfusion in young adult and aged cells and then recovered to preischemic levels in both groups. Cell viability also declined equally in reperfusion in both groups. In short, some cellular responses to simulated ischemia and reperfusion were similar in both groups. Even so, aged myocytes exhibited a much greater and more prolonged accumulation of diastolic Ca(2+) in ischemia and in early reperfusion compared with myocytes from younger animals. In addition, the degree of mechanical alternans in ischemia increased significantly with age. The observation that there is an age-related increase in accumulation of diastolic Ca(2+) in ischemia and early reperfusion may account for the increased sensitivity to ischemia and reperfusion injury in the aging heart. The occurrence of mechanical alternans in ischemia may contribute to contractile dysfunction in ischemia in the aging heart.  相似文献   
477.
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.  相似文献   
478.
479.
The self-association of proteins to form amyloid fibrils has been implicated in the pathogenesis of a number of diseases including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. We recently reported that the myeloid scavenger receptor CD36 initiates a signaling cascade upon binding to fibrillar beta-amyloid that stimulates recruitment of microglia in the brain and production of inflammatory mediators. This receptor plays a key role in the pathogenesis of atherosclerosis, prompting us to evaluate whether fibrillar proteins were present in atherosclerotic lesions that could initiate signaling via CD36. We show that apolipoprotein C-II, a component of very low and high density lipoproteins, readily forms amyloid fibrils that initiate macrophage inflammatory responses including reactive oxygen production and tumor necrosis factor alpha expression. Using macrophages derived from wild type and Cd36(-/-) mice to distinguish CD36-specific events, we show that fibrillar apolipoprotein C-II activates a signaling cascade downstream of this receptor that includes Lyn and p44/42 MAPKs. Interruption of this signaling pathway through targeted deletion of Cd36 or blocking of p44/42 MAPK activation inhibits macrophage tumor necrosis factor alpha gene expression. Finally, we demonstrate that apolipoprotein C-II in human atheroma co-localizes to regions positive for markers of amyloid and macrophage accumulation. Together, these data characterize a CD36-dependent signaling cascade initiated by fibrillar amyloid species that may promote atherogenesis.  相似文献   
480.
Human apolipoprotein E (apoE) exists as three main isoforms, differing by single amino acid substitutions, with the apoE4 isoform strongly linked to the incidence of late onset Alzheimer's disease. We have expressed and purified apoE3 and apoE4 from Escherichia coli and compared their hydrodynamic properties by gel permeation liquid chromatography, capillary electrophoresis, circular dichroism, and sedimentation methods. Sedimentation velocity experiments, employing a new method for determining the size distribution of polydisperse macromolecules in solution (Schuck, P. (2000) Biophys. J. 78, 1606-1619), provide direct evidence for the heterogeneous solution structures of apoE3 and apoE4. In a lipid-free environment, apoE3 and apoE4 exist as a slow equilibrium mixture of monomer, tetramer, octamer, and a small proportion of higher oligomers. Both sedimentation velocity and equilibrium experiments indicate that apoE4 has a greater propensity to self-associate. We also demonstrate that apoE3 and apoE4 oligomers dissociate significantly in the presence of dihexanoylphosphatidylcholine micelles (20 mm) and to a lesser extent at submicellar concentrations (4 mm). The alpha-helical content for both isoforms was almost identical (50%) in the presence and absence of dihexanoylphosphatidylcholine. These results reveal that apoE oligomers undergo phospholipid-induced dissociation to folded monomers, suggesting the monomeric form prevails on the lipoprotein surface in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号