首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7278篇
  免费   827篇
  国内免费   4篇
  8109篇
  2021年   68篇
  2018年   63篇
  2017年   55篇
  2016年   111篇
  2015年   173篇
  2014年   196篇
  2013年   263篇
  2012年   338篇
  2011年   363篇
  2010年   243篇
  2009年   214篇
  2008年   346篇
  2007年   327篇
  2006年   334篇
  2005年   315篇
  2004年   362篇
  2003年   323篇
  2002年   310篇
  2001年   105篇
  2000年   115篇
  1999年   144篇
  1998年   124篇
  1997年   72篇
  1996年   69篇
  1995年   81篇
  1994年   76篇
  1993年   75篇
  1992年   116篇
  1991年   105篇
  1990年   110篇
  1989年   97篇
  1988年   83篇
  1987年   85篇
  1986年   94篇
  1985年   94篇
  1984年   84篇
  1983年   80篇
  1982年   98篇
  1981年   81篇
  1980年   91篇
  1979年   87篇
  1978年   71篇
  1977年   91篇
  1976年   77篇
  1975年   75篇
  1974年   102篇
  1973年   90篇
  1971年   60篇
  1970年   52篇
  1969年   57篇
排序方式: 共有8109条查询结果,搜索用时 0 毫秒
101.
Although bacterial species display wide variation in their overall GC contents, the genes within a particular species' genome are relatively similar in base composition. As a result, sequences that are novel to a bacterial genome—i.e., DNA introduced through recent horizontal transfer—often bear unusual sequence characteristics and can be distinguished from ancestral DNA. At the time of introgression, horizontally transferred genes reflect the base composition of the donor genome; but, over time, these sequences will ameliorate to reflect the DNA composition of the new genome because the introgressed genes are subject to the same mutational processes affecting all genes in the recipient genome. This process of amelioration is evident in a large group of genes involved in host-cell invasion by enteric bacteria and can be modeled to predict the amount of time required after transfer for foreign DNA to resemble native DNA. Furthermore, models of amelioration can be used to estimate the time of introgression of foreign genes in a chromosome. Applying this approach to a 1.43-megabase continuous sequence, we have calculated that the entire Escherichia coli chromosome contains more than 600 kb of horizontally transferred, protein-coding DNA. Estimates of amelioration times indicate that this DNA has accumulated at a rate of 31 kb per million years, which is on the order of the amount of variant DNA introduced by point mutations. This rate predicts that the E. coli and Salmonella enterica lineages have each gained and lost more than 3 megabases of novel DNA since their divergence. Received: 7 July 1996 / Accepted: 27 September 1996  相似文献   
102.
Plasmodiophora brassicae causes clubroot disease in cruciferous plants, and is an emerging threat to Canadian canola (Brassica napus) production. This review focuses on recent studies into the pathogenic diversity of P. brassicae populations, mechanisms of pathogenesis and resistance, and the development of diagnostic tests for pathogen detection and quantification. TAXONOMY: Plasmodiophora brassicae is a soil-borne, obligate parasite within the class Phytomyxea (plasmodiophorids) of the protist supergroup Rhizaria. DISEASE SYMPTOMS: Clubroot development is characterized by the formation of club-shaped galls on the roots of affected plants. Above-ground symptoms include wilting, stunting, yellowing and premature senescence. DISEASE CYCLE: Plasmodiophora brassicae first infects the root hairs, producing motile zoospores that invade the cortical tissue. Secondary plasmodia form within the root cortex and, by triggering the expression of genes involved in the production of auxins, cytokinins and other plant growth regulators, divert a substantial proportion of plant resources into hypertrophic growth of the root tissues, resulting in the formation of galls. The secondary plasmodia are cleaved into millions of resting spores and the root galls quickly disintegrate, releasing long-lived resting spores into the soil. A serine protease, PRO1, has been shown to trigger resting spore germination. PHYSIOLOGICAL SPECIALIZATION: Physiological specialization occurs in populations of P. brassicae, and various host differential sets, consisting of different collections of Brassica genotypes, are used to distinguish among pathotypes of the parasite. DETECTION AND QUANTIFICATION: As P. brassicae cannot be cultured, bioassays with bait plants were traditionally used to detect the pathogen in the soil. More recent innovations for the detection and quantification of P. brassicae include the use of antibodies, quantitative polymerase chain reaction (qPCR) and qPCR in conjunction with signature fatty acid analysis, all of which are more sensitive than bioassays. RESISTANCE IN CANOLA: Clubroot-resistant canola hybrids, recently introduced into the Canadian market, represent an important new tool for clubroot management in this crop. Genetic resistance must be carefully managed, however, as it has been quickly overcome in other regions. At least three resistance genes and one or two quantitative trait loci are involved in conferring resistance to P. brassicae. Root hair infection still occurs in resistant cultivars, but secondary plasmodia often remain immature and unable to produce resting spores. Fewer cell wall breakages occur in resistant hosts, and spread of the plasmodium through cortical tissue is restricted. More information on the genetics of clubroot resistance in canola is needed to ensure more effective resistance stewardship. USEFUL WEBSITES: http://www.canolacouncil.org/clubroot/resources.aspx, http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_mathematik_und_naturwissenschaften/fachrichtung_biologie/botanik/pflanzenphysiologie/clubroot, http://www.ohio.edu/people/braselto/plasmos/  相似文献   
103.
104.
Steady-state and time-resolved fluorescence spectroscopy and fluorescence microscopy of leukocyte flavoproteins have been performed. Both living human peripheral blood monocytes and neutrophils have been utilized as experimental models, as the former relies much more heavily on mitochondrial metabolism for energy production than the latter. We confirm previous studies indicating that cellular flavoproteins absorb at 460 nm and emit at 530 nm, very similar to that of the FAD moiety. Furthermore, the emission properties of intracellular flavoproteins were altered by the metabolic inhibitors rotenone, antimycin A, azide, cyanide, DNP (2,4-dinitrophenol), and FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone]. Kinetic studies revealed flavoprotein emission oscillations in both monocytes and neutrophils. The flavoprotein intensity oscillations correlated with the physiological status of the cell and the nature of membrane receptor ligation. Microscopy revealed the presence of flavoprotein fluorescence in association with the plasma membrane, intracellular granules and distributed throughout the cytoplasm, presumably within mitochondria. Metabolic inhibitors such as cyanide suggest that the plasma membrane and granular components are cyanide-insensitive and therefore are likely associated with the flavoprotein component of the NADPH oxidase, which is located in these two compartments. This interpretation was found to be consistent with structural localization of the NADPH oxidase using an antibody molecule specific for this protein. Using peripheral blood neutrophils, which display less active mitochondria, and time-resolved emission spectroscopy, we show that the NADPH oxidase-associated flavoprotein undergoes a periodic transient reduction of about 54±2 ms in living cells. This finding is consistent with prior studies indicating that propagating substrate (NADPH) waves periodically promote electron transport across the NADPH oxidase.  相似文献   
105.
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.  相似文献   
106.
Signaling from rhombomeres 5 and 6 of the hindbrain is thought to be important for inner ear patterning. In Noggin −/− embryos, the gross anatomy of the inner ear is distorted and malformed, with cochlear duct outgrowth and coiling most affected. We attributed these defects to a caudal shift of the rhombomeres caused by the shortened body axis and the kink in the neural tube. To test the hypothesis that a caudal shift of the rhombomeres affects inner ear development, we surgically generated chicken embryos in which rhombomeres 5 and 6 were similarly shifted relative to the position of the inner ears, as in Noggin mutants. All chicken embryos with shifted rhombomeres showed defects in cochlear duct formation indicating that signaling from rhombomeres 5 and 6 is important for cochlear duct patterning in both chicken and mice. In addition, the size of the otic capsule is increased in Noggin −/− mutants, which most likely is due to unopposed BMP signaling for chondrogenesis in the peri-otic mesenchyme.  相似文献   
107.
108.
109.
An assembled cDNA coding for the putative single-subunit NADH dehydrogenase (NDX) of Ciona intestinalis was introduced into Drosophila melanogaster. The encoded protein was found to localize to mitochondria and to confer rotenone-insensitive substrate oxidation in organello. Transgenic flies exhibited increased resistance to menadione, starvation and temperature stress, and manifested a sex and diet-dependent increase in mean lifespan of 20–50%. However, NDX was able only weakly to complement the phenotypes produced by the knockdown of complex I subunits.  相似文献   
110.
We use a proof-of-concept experiment and two mathematical models to explore growth-induced tissue buckling, as may occur in colorectal crypt formation. Our experiment reveals how growth of a cultured epithelial monolayer on a thin flexible substrate can cause out-of-plane substrate deflections. We describe this system theoretically using a ‘bilayer’ model in which a growing cell layer adheres to a thin compressible elastic beam. We compare this with the ‘supported-monolayer’ model due to Edwards and Chapman (Bull Math Biol 69:1927–1942, 2007) for an incompressible expanding beam (representing crypt epithelium), which incorporates viscoelastic tethering to underlying stroma. We show that the bilayer model can exhibit buckling via parametric growth (in which the system passes through a sequence of equilibrium states, parameterised by the total beam length); in this case, non-uniformities in cell growth and variations in cell–substrate adhesion are predicted to have minimal effect on the shape of resulting buckled states. The supported-monolayer model reveals how competition between lateral supports and stromal adhesion influences the wavelength of buckled states (in parametric growth), and how non-equilibrium relaxation of tethering forces influences post-buckled shapes. This model also predicts that non-uniformities in growth patterns have a much weaker influence on buckled shapes than non-uniformities in material properties. Together, the experiment and models support the concept of patterning by growth-induced buckling and suggest that targeted softening of a growing cell layer provides greater control in shaping tissues than non-uniform growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号