首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   21篇
  110篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   2篇
  2001年   1篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1964年   1篇
  1961年   1篇
  1957年   1篇
  1934年   1篇
  1932年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
31.
The entire mitochondrial genome was sequenced in a prostriate tick, Ixodes hexagonus, and a metastriate tick, Rhipicephalus sanguineus. Both genomes encode 22 tRNAs, 13 proteins, and two ribosomal RNAs. Prostriate ticks are basal members of Ixodidae and have the same gene order as Limulus polyphemus. In contrast, in R. sanguineus, a block of genes encoding NADH dehydrogenase subunit 1 (ND1), tRNA(Leu)(UUR), tRNA(Leu)(CUN), 16S rDNA, tRNA(Val), 12S rDNA, the control region, and the tRNA(Ile) and tRNA(Gln) have translocated to a position between the tRNA(Glu) and tRNA(Phe) genes. The tRNA(Cys) gene has translocated between the control region and the tRNA(Met) gene, and the tRNA(Leu)(CUN) gene has translocated between the tRNA(Ser)(UCN) gene and the control region. Furthermore, the control region is duplicated, and both copies undergo concerted evolution. Primers that flank these rearrangements confirm that this gene order is conserved in all metastriate ticks examined. Correspondence analysis of amino acid and codon use in the two ticks and in nine other arthropod mitochondrial genomes indicate a strong bias in R. sanguineus towards amino acids encoded by AT-rich codons.   相似文献   
32.
In plants, defensive proteins secreted to leaf aerial surfaces have not previously been considered to be a strategy of pathogen resistance, and the general occurrence of leaf surface proteins is not generally recognized. We found that leaf water washes (LWW) of the experimental plant Nicotiana tabacum tobacco introduction (TI) 1068 contained highly hydrophobic, basic proteins that inhibited spore germination and leaf infection by the oomycete pathogen Peronospora tabacina. We termed these surface-localized proteins tobacco phylloplanins, and we isolated the novel gene T-Phylloplanin (for Tobacco Phylloplanin) and its promoter from N. tabacum. Escherichia coli-expressed T-phylloplanin inhibited P. tabacina spore germination and greatly reduced leaf infection. The T-phylloplanin promoter, when fused to the reporter genes beta-glucuronidase and green fluorescent protein, directed biosynthesis only in apical-tip cell clusters of short, procumbent glandular trichomes. Here, we provide evidence for a protein-based surface defense system in the plant kingdom, wherein protein biosynthesis in short, procumbent glandular trichomes allows surface secretion and deposition of defensive phylloplanins on aerial surfaces as a first-point-of-contact deterrent to pathogen establishment. As yet uncharacterized surface proteins have been detected on most plant species examined.  相似文献   
33.
Calmodulin N-methyltransferase (CaM KMT) is an evolutionarily conserved enzyme in eukaryotes that transfers three methyl groups to a highly conserved lysyl residue at position 115 in calmodulin (CaM). We sought to elucidate whether the methylation status of CaM plays a role in CaM-mediated signaling pathways by gene expression analyses of CaM KMT and phenotypic characterization of Arabidopsis thaliana lines wherein CaM KMT was overexpressed (OX), partially silenced, or knocked out. CaM KMT was expressed in discreet spatial and tissue-specific patterns, most notably in root tips, floral buds, stamens, apical meristems, and germinating seeds. Analysis of transgenic plants with genetic dysfunction in CaM KMT revealed a link between the methylation status of CaM and root length. Plants with suppressed CaM methylation had longer roots and CaM KMT OX lines had shorter roots than wild type (Columbia-0). CaM KMT was also found to influence the root radial developmental program. Protein microarray analyses revealed a number of proteins with specificity for methylated forms of CaM, providing candidate functional intermediates between the observed phenotypes and the target pathways. This work demonstrates that the functionality of the large CaM family in plants is fine-tuned by an overarching methylation mechanism.  相似文献   
34.
COVID‐19 created a host of challenges for science education; in our case, the pandemic halted our in‐person elementary school outreach project on bird biology. This project was designed as a year‐long program to teach fifth‐grade students in Ithaca, New York, USA, about bird ecology and biodiversity using in‐person presentations, games, activities, and outdoor demonstrations. As a central part of this effort, we set up nest boxes on school property and planned to monitor them with students during bird breeding in the spring. Here, we describe our experiences transitioning this program online: we live streamed nest boxes to the students’ virtual classroom and used them as a focal point for virtual lessons on bird breeding and nestling development. In an era of social distancing and isolation, we propose that nest box live streaming and virtual lessons can support communities by providing access to the outdoors and unconventional science learning opportunities for all students. Instituting similar programs at local schools has the potential to increase equitable learning opportunities for students across geographic locations and with varying degrees of physical access to the outdoors and nature.  相似文献   
35.
36.
Both the large (LS) and small (SS) subunits of Rubisco are subject to a plethora of co- and post-translational modifications. With the exceptions of LS carbamylation and SS transit sequence processing, the remaining modifications, including deformylation, acetylation, methylation, and N-terminal proteolytic processing of the LS, are still biochemically and/or functionally undefined although they are found in nearly all forms of Rubisco from vascular plants. A collection of relatively unique enzymes catalyse these modifications, and several have been characterized in other organisms. Some of the observed modifications in the LS and SS clearly suggest novel changes in enzyme specificity and/or activity, and others have common features with other co- and post-translationally modifying enzymes. With the possible exception of Lys14 methylation in the LS, processing of both the LS and SS of Rubisco is by default an ordered process sequentially leading up to the final forms observed in the holoenzyme. An overview of the nature of structural modifications in the LS and SS of Rubisco is presented, and, where possible, the nature of the enzymes catalysing these modifications (either through similarity with other known enzymes or through direct enzymological characterization) is described. Overall, there are a distinct lack of functional and mechanistic observations for modifications in Rubisco and thus represent many potentially productive avenues for research.  相似文献   
37.
Recent research in mammals supports a link between cognitive ability and the gut microbiome, but little is known about this relationship in other taxa. In a captive population of 38 zebra finches (Taeniopygia guttata), we quantified performance on cognitive tasks measuring learning and memory. We sampled the gut microbiome via cloacal swab and quantified bacterial alpha and beta diversity. Performance on cognitive tasks related to beta diversity but not alpha diversity. We then identified differentially abundant genera influential in the beta diversity differences among cognitive performance categories. Though correlational, this study provides some of the first evidence of an avian microbiota–gut–brain axis, building foundations for future microbiome research in wild populations and during host development.  相似文献   
38.
39.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
40.
Blood samples were drawn from uterine arteries and veins of pregnant gilts and from the umbilical artery and vein of each of their fetuses during laparotomy at Day 80. Concentrations of progesterone (P) were greater in fetal than maternal plasma. Uptake of P from the placenta by the fetal blood was evident but was not equivalent to the maternal uterine arterial-venous difference in P concentration. No correlation between plasma P and fetal weight was noted. Concentrations of P in both umbilical vessels of female fetuses were higher than in male fetuses. These data indicate that fetal sex affects the rate of transport and/or synthesis of P in the utero/placental compartment and/or the rate of metabolism of P in the fetus. The relative importance of de novo synthesis and transplacental transport of P in establishing concentrations of P in fetal blood remains to be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号