首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   58篇
  国内免费   1篇
  2021年   3篇
  2020年   7篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   15篇
  2013年   19篇
  2012年   15篇
  2011年   17篇
  2010年   12篇
  2009年   9篇
  2008年   14篇
  2007年   24篇
  2006年   13篇
  2005年   16篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   9篇
  2000年   14篇
  1999年   16篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   7篇
  1991年   11篇
  1990年   8篇
  1989年   10篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   5篇
  1979年   9篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1974年   9篇
  1973年   3篇
  1971年   5篇
  1969年   3篇
  1950年   2篇
  1923年   2篇
排序方式: 共有472条查询结果,搜索用时 593 毫秒
61.
Reconciling Carbon-cycle Concepts, Terminology, and Methods   总被引:5,自引:1,他引:4  
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by scientists to represent two different concepts. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER). We further propose that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from [negative sign]) ecosystems. Net ecosystem carbon balance differs from NEP when C fluxes other than C fixation and respiration occur, or when inorganic C enters or leaves in dissolved form. These fluxes include the leaching loss or lateral transfer of C from the ecosystem; the emission of volatile organic C, methane, and carbon monoxide; and the release of soot and CO2 from fire. Carbon fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to the measurement of C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we can provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle.  相似文献   
62.
63.
Houghton DC 《ZooKeys》2012,(189):1-389
The caddisfly fauna of Minnesota contains at least 277 species within 21 families and 75 genera. These species are based on examination of 312,884 specimens from 2,166 collections of 937 Minnesota aquatic habitats from 1890 to 2007. Included in these totals is my own quantitative sampling of 4 representative habitat types: small streams, medium rivers, large rivers, and lakes, from each of the 58 major Minnesota watersheds from June through September during 1999-2001. All species are illustrated herein, and their known Minnesota abundances, distributions, adult flight periodicities, and habitat affinities presented. Four species: Lepidostoma griseum (Lepidostomatidae), Psilotreta indecisa (Odontoceridae), and Phryganea sayi and Ptilostomis angustipennis (Phryganeidae) are added to the known fauna. An additional 31 dubious species records are removed for various reasons. Of the 5 determined caddisfly regions of the state, species richness per watershed was highest in the Lake Superior and Northern Regions, intermediate in the Southeastern, and lowest in the Northwestern and Southern. Of the 48 individual collections that yielded >40 species, all but 1 were from the Northern Region. Many species, especially within the families Limnephilidae and Phryganeidae, have appeared to decrease in distribution and abundance during the past 75 years, particularly those once common within the Northwestern and Southern Regions. Many species now appear regionally extirpated, and a few have disappeared from the entire state. The loss of species in the Northwestern and Southern Regions, and probably elsewhere, is almost certainly related to the conversion of many habitats to large-scale agriculture during the mid-20th century.  相似文献   
64.
The inhibitory receptor programmed death-1 (PD-1) is present on CD8(+) T cells in chronic hepatitis C virus (HCV), but expression patterns in spontaneously resolving infections are incompletely characterized. Here we report that PD-1 was usually absent on memory CD8(+) T cells from chimpanzees with resolved infections, but sustained low-level expression was sometimes observed in the absence of apparent virus replication. PD-1-positive memory T cells expanded and displayed antiviral activity upon reinfection with HCV, indicating conserved function. This animal model should facilitate studies of whether PD-1 differentially influences effector and memory T-cell function in resolved versus persistent human infections.  相似文献   
65.
66.
We developed a process‐based model of forest growth, carbon cycling and land‐cover dynamics named CARLUC (for CARbon and Land‐Use Change) to estimate the size of terrestrial carbon pools in terra firme (nonflooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study the impact of Amazonian deforestation, selective logging and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re‐growth over the period from 1970 to 1998. We calculate that the net flux to the atmosphere during this period reached a maximum of ~0.35 PgC yr?1 (1 PgC= 1 × 1015 gC) in 1990, with a cumulative release of ~7 PgC from 1970 to 1998. The net flux is higher than predicted by an earlier study ( Houghton et al., 2000 ) by a total of 1 PgC over the period 1989–1998 mainly because CARLUC predicts relatively high mature forest carbon storage compared with the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by~1 PgC from 1970 to 1998, while different assumptions about land‐cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte‐Carlo approach, is roughly 35% of the mean value (1 SD).  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号