首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   32篇
  2023年   3篇
  2015年   7篇
  2014年   4篇
  2013年   11篇
  2012年   8篇
  2011年   15篇
  2010年   7篇
  2009年   9篇
  2008年   4篇
  2007年   9篇
  2006年   8篇
  2005年   9篇
  2004年   19篇
  2003年   11篇
  2002年   11篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1992年   7篇
  1991年   4篇
  1990年   7篇
  1989年   10篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1982年   5篇
  1980年   9篇
  1979年   5篇
  1978年   3篇
  1977年   6篇
  1976年   4篇
  1975年   11篇
  1974年   10篇
  1973年   5篇
  1972年   7篇
  1971年   7篇
  1970年   5篇
  1966年   4篇
  1965年   4篇
  1961年   2篇
  1959年   2篇
  1928年   2篇
  1908年   2篇
排序方式: 共有361条查询结果,搜索用时 62 毫秒
81.
The reduction of nitrite (NO2) into nitric oxide (NO), catalyzed by nitrite reductase, is an important reaction in the denitrification pathway. In this study, the catalytic mechanism of the copper-containing nitrite reductase from Alcaligenes xylosoxidans (AxNiR) has been studied using single and multiple turnover experiments at pH 7.0 and is shown to involve two protons. A novel steady-state assay was developed, in which deoxyhemoglobin was employed as an NO scavenger. A moderate solvent kinetic isotope effect (SKIE) of 1.3 ± 0.1 indicated the involvement of one protonation to the rate-limiting catalytic step. Laser photoexcitation experiments have been used to obtain single turnover data in H2O and D2O, which report on steps kinetically linked to inter-copper electron transfer (ET). In the absence of nitrite, a normal SKIE of ∼1.33 ± 0.05 was obtained, suggesting a protonation event that is kinetically linked to ET in substrate-free AxNiR. A nitrite titration gave a normal hyperbolic behavior for the deuterated sample. However, in H2O an unusual decrease in rate was observed at low nitrite concentrations followed by a subsequent acceleration in rate at nitrite concentrations of >10 mm. As a consequence, the observed ET process was faster in D2O than in H2O above 0.1 mm nitrite, resulting in an inverted SKIE, which featured a significant dependence on the substrate concentration with a minimum value of ∼0.61 ± 0.02 between 3 and 10 mm. Our work provides the first experimental demonstration of proton-coupled electron transfer in both the resting and substrate-bound AxNiR, and two protons were found to be involved in turnover.Denitrification is an anaerobic respiration pathway found in bacteria, archaea, and fungi, in which ATP synthesis is coupled to the sequential reduction of nitrate (NO3) and nitrite (NO2) (NO3 → NO2 → NO → N2O → N2) (13).3 The first committed step in this reaction cascade is the formation of gaseous NO by nitrite reductase (NiR), the key enzyme of this pathway. Two distinct classes of periplasmic NiR are found in denitrifying bacteria, one containing cd1 hemes as prosthetic groups (46) and the other utilizing two copper centers to catalyze the one-electron reduction of nitrite (7). Copper-containing NiRs are divided into two main groups according to the color of their oxidized type 1 copper center (T1Cu), with shades ranging from blue to green (3, 7). NiR from Alcaligenes xylosoxidans subsp. xylosoxidans (NCIMB 11015, AxNiR), which is analyzed in this study, is a member of the blue CuNiR group. The blue and green subclasses show a high degree of sequence similarity (70%) (8) and have similar trimeric structures with each monomer (∼36.5 kDa in AxNiR) consisting of two greek key β-barrel cupredoxin-like motifs as well as one long and two short α-helical regions (7, 9).Each NiR monomer contains two copper-binding sites per catalytic unit. One is a T1Cu center, which receives electrons from a physiological redox partner protein and is buried 7 Å beneath the protein surface (10), and the other copper is a type 2 center (T2Cu), constituting the catalytically active substrate-binding site (11). The physiological electron donor for the blue NiRs are the small copper protein azurin (14 kDa) (7) and cytochrome c551 (7, 12, 13). The T1Cu, which is responsible for the color of NiR, serves as the electron delivery center and is coordinated by two histidine residues as well as one cysteine and one methionine residue. The catalytic T2Cu, which like all T2Cu centers has very weak optical bands, is ligated to three His residues and an H2O/OH ligand in the resting state. This H2O/OH ligand is held in place by hydrogen bonds to the active site residues, Asp-92 (AxNiR numbering) and His-249, and gets displaced by the substrate during catalytic turnover (14). The T2Cu is located at the base of a 13–14-Å substrate access channel at the interface of two monomers with one of the three His residues being part of the adjacent subunit (15, 16). The two copper centers are connected by a 12.6-Å covalent bridge provided by the T1Cu-coordinating Cys and by one of the T2Cu His ligands (17, 18). This linkage has been suggested to constitute the electron transfer (ET) pathway from the T1Cu center to the catalytically active T2Cu center via 11 covalent bonds (19).Intramolecular ET from T1- to T2Cu has been extensively examined using pulse radiolysis studies (7, 1924). In a variety of NiR species, ET could be measured, both in the presence and absence of substrate, with observed ET rate constants (kET(obs)) ranging from ∼150 to ∼2000 s−1. According to the Marcus semi-classical ET theory (25), the redox potentials (E0, redox midpoint potential at pH 7.0) of the copper centers affect both the thermodynamic equilibrium and the ET kinetics. In the absence of substrate, the difference in the redox potentials has been found to be insignificant at pH 7 (E0 (T1Cu) ∼240 mV and E0 (T2Cu) ∼230 mV (20)), implying a thermodynamically equal electron distribution between the two metal centers. From an enzymatic point of view, however, approaching this equilibrium position on such a fast time scale (≥150 s−1) is unfavorable in the absence of substrate, as NiR has been shown to form an inactive species with a reduced T2Cu that is devoid of the H2O/OH ligand and unable to bind nitrite (26, 27). Substrate binding has been proposed to induce a favorable shift in the T2Cu redox potential, which would be expected to result in an accelerated ET compared with the substrate-free reaction (7, 16, 25, 2730). However, kET(obs) values in AxgNiR (GIFU1051) have been demonstrated to be lower in the nitrite-bound than in the substrate-free enzyme between pH 7.7 and 5.5 (21). Below pH 5.5, the ET rate constants were observed to be similar in the nitrite-free and -bound enzyme (21).In addition to changes in the redox potentials and thus in the driving force of the ET reaction, several structural changes in the redox centers have been reported as a result of substrate binding, which may also influence the inter-copper ET rate by changing the reorganization energy (16, 25, 30, 31). These rearrangements include subtle changes in the Cys-His bridge linking T1- and T2Cu (32) and conformational transitions of the catalytically relevant active site residue Asp-92 (see below and Ref. 29). Moreover, the presence of nitrite has been postulated to be relayed to the T1Cu site via the so-called substrate sensor loop (via His-94, Asp-92, and His-89 in AxNiR), thereby triggering ET to the T2Cu (19, 27, 29, 32). The tight coupling of ET to the presence of substrate has been argued to prevent the formation of a deactivated enzyme species with a prematurely reduced T2Cu (14, 16, 19, 26, 27, 33). In accordance with such a feedback mechanism, in a combined crystallographic and single-crystal spectroscopic study, inter-copper ET could only be detected in crystals where nitrite was bound to the T2Cu site, whereas in the absence of substrate no such ET was observed (34). This finding, however, contradicts the pulse radiolysis results at room temperature (see above), and the apparent discrepancy between solution studies and x-ray crystallographic data collected at cryogenic temperature remains to be resolved.The one-electron reduction of nitrite to NO involves two protons according to the chemical net equation NO2 + 2H+ + e → NO + H2O, if the T2Cu is ligated by an H2O molecule in the resting state rather than an OH ion. Although the exact enzymatic mechanism is still somewhat controversial (35, 36), one suggested reaction sequence is given in Scheme 1. The potential participation of active site residues in catalyzing the proton transfer (PT) steps has been investigated by studying the pH dependence of NiR under steady-state conditions as well as by pulse radiolysis. The trends obtained for kcat and kET(obs), are similar with pH optima between 5.2 and 6, indicating the involvement of two amino acid residues (21, 22, 37). Asp-92 and His-249 have been proposed as acid-base catalysts (18, 21, 22, 28, 38), and the abrupt drop in rates at increasing pH may indicate that OH can act as a competitive inhibitor for nitrite (39). The relevance of these active site residues, however, as well as the timing of the two protonation steps is still a matter of debate (35, 40, 41).4Open in a separate windowSCHEME 1.A potential reaction mechanism proposed for CuNiRs. Adapted from Ref. 36. Nitrite is shown to bind to the oxidized T2Cu as nitrous acid, thus involving the first protonation step. It coordinates to the oxidized T2Cu center in a bidentate fashion. Following inter-copper ET yielding a reduced T2Cu center, the initially deprotonated Asp-92 accepts a proton, which is subsequently transferred to the substrate. His-249 may be a potential source of this second proton. PT and ET reactions may be reversible and they may be concerted rather than sequential as suggested by the arrows. See text for further information.There are no experimental studies that have been aimed at directly examining the kinetic coupling of PT and ET steps in AxNiR. In this study of the blue AxNiR, our aims were to gain further insight into the mechanism of nitrite reduction by combining multiple turnover experiments with laser photoexcitation studies to measure the (single turnover) inter-copper ET. An extensive analysis of the solvent kinetic isotope effect (SKIE) has been employed as a means of determining whether solvent-exchangeable protons and/or water molecules play a rate-limiting role in the catalytic turnover and/or in inter-copper ET.  相似文献   
82.
Domesticated lettuce varieties encompass much morphological variation across a range of crop type groups, with large collections of cultivars and landrace accessions maintained in genebanks. Additional variation not captured during domestication, present in ancestral wild relatives, represents a potentially rich source of alleles that can deliver to sustainable crop production. However, these large collections are difficult and costly to screen for many agronomically important traits. In this paper, we describe the generation of a diversity collection of 96 lettuce and wild species accessions that are amenable to routine phenotypic analysis and their genotypic characterization with a panel of 682 newly developed expressed sequence tag (EST)-linked KASP? single nucleotide polymorphism (SNP) markers that are anchored to the draft Lactuca sativa genome assembly. To exemplify the utility of these resources, we screened the collection for putative sources of resistance to currant-lettuce aphid (Nasonovia ribisnigri) and carried out association analyses to look for potential SNPs linked to resistance.  相似文献   
83.
Hemoproteins play central roles in the formation and utilization of nitric oxide (NO) in cellular signaling, as well as in protection against nitrosative stress. Key to heme-nitrosyl function and reactivity is the Fe coordination number (5 or 6). For (five-coordinate) 5c-NO complexes, the potential for NO to bind on either heme face exists, as in the microbial cytochrome c′ from Alcaligenes xylosoxidans (AxCYTcp), which forms a stable proximal 5c-NO complex via a distal six-coordinate NO intermediate and a putative dinitrosyl species. Strong parallels between the NO-binding kinetics of AxCYTcp, the eukaryotic NO sensor soluble guanylate cyclase, and the ferrocytochrome c/cardiolipin complex have led to the suggestion that a distal-to-proximal NO switch could contribute to the selective ligand responses in gas-sensing hemoproteins. The proximal NO-binding site in AxCYTcp is close to a conserved basic (Arg124) residue that is postulated to modulate NO reactivity. We have replaced Arg124 by five different amino acids and have determined high-resolution (1.07-1.40 Å) crystallographic structures with and without NO. These, together with kinetic and resonance Raman data, provide new insights into the mechanism of distal-to-proximal heme-NO conversion, including the determinants of Fe-His bond scission. The Arg124Ala variant allowed us to determine the structure of an analog of the previously unobserved key 5c-NO distal intermediate species. The very high resolution structures combined with the extensive spectroscopic and kinetic data have allowed us to provide a fresh insight into heme reactivity towards NO, a reaction that is of wide importance in biology.  相似文献   
84.
The Millennium Ecosystem Assessment and other commentators have warned about the impacts that biodiversity decline will have on human health. There is no doubting that the natural world provides mankind with the majority of the resources required to sustain life and health. Many species provide food, fuel, medicines; with the potential for many more (as of yet) undiscovered uses for various species. Despite this, there have been very few attempts to actually investigate relationships between biodiversity (i.e. number of species, rather than the ability of specific species to provide health benefits) and human health. This paper reviews the available evidence and demonstrates that while the links between biodiversity and health seem intuitive, they are very difficult to prove. Socio-economics has a huge influence on health status and the exploitation of natural resources (leading to eventual biodiversity loss) tends to have a positive economic effects. More direct effects of biodiversity on health include the diversity of the internal microbiome, the effect of natural diversity on our mental health and well-being (although this has large social aspects with many people feeling fearful in very diverse environments). Still to be elucidated are the tipping points where the level of global biodiversity loss is such that human health can no longer be sustained.  相似文献   
85.
While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted for some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occuring during B-lymphocyte differentiation. The extent of the deleted region was determined using probes from the various IGLV subgroups and they each cover at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage V135 to the distal part of the IGLV gene region. Since the deletions are relatively small, the cell line will be valuable for mapping IGLV genes in the distal part of this region.  相似文献   
86.
87.
88.
Parks JE  Hough SR 《Theriogenology》1990,34(5):903-912
The effects of platelet activating factor (PAF) on motility and the acrosome reaction of ejaculated bull spermatozoa were evaluated. Washed spermatozoa (30 x 10(6)/ml) were incubated (39 degrees C) for up to 2 h with 10 to 200 muM PAF in a modified Tyrode's solution (pH 7.4) containing 3 mg/ml bovine serum albumin. Sperm motility was evaluated subjectively and by computer-assisted semen analysis. Percent acrosome-reacted spermatozoa was quantified microscopically from fixed smears following Giemsa staining. Percent fertilization by PAF-treated spermatozoa was determined using in vitro-matured bovine ova. Percent sperm motility decreased with >/= 50 muM PAF, while the rate of motility loss increased with PAF concentration (P<0.001). Percent acrosome reactions increased with PAF concentration during incubation (P<0.001). Acrosomal loss was rapid and complete with 200 muM PAF. At concentrations between 80 to 120 muM PAF, bull spermatozoa underwent acrosome reactions without a rapid loss of motility and penetrated in vitro-matured bovine ova at a rate comparable to that of heparin-capacitated spermatozoa (68 versus 54%, respectively). Incubation of bull spermatozoa with 10 to 50 muM PAF for 45 min had no effect on percent progressive motility, sperm velocity or other motility parameters. These results indicate that PAF can be used to induce acrosome reactions in bull spermatozoa and to promote in vitro fertilization of bovine ova. Under the conditions used in this study, PAF did not stimulate bovine sperm motility.  相似文献   
89.
Rabbit antibodies have been raised to pig heart citrate synthase. Using purified IgG, competitive enzyme-linked immunoassays and assays of citrate synthase activity indicate the presence of antibodies to a number of antigenic sites on the enzyme, only some of which are essential for catalytic activity. From a comparison of citrate synthases from prokaryotic and eukaryotic organisms, the degree of interaction between antibody and enzyme was in the order: pig heart greater than pigeon breast greater than Bacillus megaterium greater than Escherichia coli. These findings are discussed in terms of the known interspecies diversity of the enzyme.  相似文献   
90.
In a chain of lakes along which nutrient availability varies in a gradient, we performed factorial nutrient enrichment experiments to determine if nitrogen limitation was the principal factor controlling the differences in phytoplankton biomass, photosynthetic productivity, diversity, and species composition among two of the lakes in the chain. In the least productive lake, East Graham Lake, P and C enrichments (in the absence of N enrichment) had no effect on biomass and diversity, whereas within two weeks the N enrichments (alone or in any combination with P and/or C) increased the biomass and decreased the diversity of East Graham Lake phytoplankton to levels similar or identical to those in more productive Shoe Lake. Short-term 14C photosynthetic rates in East Graham Lake water also responded only to N in the third week. However, photosynthesis was stimulated by P in the first week, and a few species did increase in numbers with P enrichment, suggesting that some degree of P limitation remains in addition to the strong N limitation in East Graham Lake. A number of species responded individually to the enrichments in a manner similar to that of the overall community, and a strong overlapping of discriminant analysis scores for N-enriched East Graham Lake with those of Shoe Lake was consistent with our prediction that the community structure of N-enriched East Graham Lake water would shift toward that of Shoe Lake. However, many species did not respond consistently with these results, and the nutrients tested were clearly not a major factor in the differences in abundance of those species among the two lakes. The results support the argument that overall biomass production and diversity of the phytoplankton community in a lake can be a relatively simple function of a single most-limiting nutrient. However, many of the species responses also confirm that, while nutrient availability is an important factor in the control of the species composition of the community, other factors are likely to prevent reliable predictions of all species effects on the basis of nutrient availability alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号